Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 1999, Volume 2, Number 2, Pages 12–20 (Mi mt152)  

An Asymptotic Value of a Cooperative Game with Infinitely Many Disparate Participants

G. N. Dyubin

St. Petersburg Institute for Economics and Mathematics, Russian Academy of Sciences
Abstract: In the article, we define the asymptotic value for an infinite cooperative game $v$ associated with an admissible sequence of partitions of the unit segment and a probability measure $\mu$ defined on its Borel $\sigma$-algebra. The function $v$ is assumed to be absolutely continuous relative to $\mu$; moreover (in contrast to standard settings), this measure may have an atomic component. The use of a new variational norm, the polynomial variation of a nonadditive set function, plays a crucial role in defining the class of games with the asymptotic value. The main result of the article consists in establishing simple natural conditions for existence and countable additivity of the values for games of bounded polynomial variation.
Key words: polynomial variation of a nonadditive set function, admissible sequence of partitions, asymptotic value of a cooperative game.
Received: 17.06.1996
Bibliographic databases:
UDC: 519.83
Language: Russian
Citation: G. N. Dyubin, “An Asymptotic Value of a Cooperative Game with Infinitely Many Disparate Participants”, Mat. Tr., 2:2 (1999), 12–20; Siberian Adv. Math., 10:2 (2000), 1–8
Citation in format AMSBIB
\Bibitem{Dyu99}
\by G.~N.~Dyubin
\paper An Asymptotic Value of a~Cooperative Game with Infinitely Many Disparate Participants
\jour Mat. Tr.
\yr 1999
\vol 2
\issue 2
\pages 12--20
\mathnet{http://mi.mathnet.ru/mt152}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1767822}
\zmath{https://zbmath.org/?q=an:0954.91007}
\transl
\jour Siberian Adv. Math.
\yr 2000
\vol 10
\issue 2
\pages 1--8
Linking options:
  • https://www.mathnet.ru/eng/mt152
  • https://www.mathnet.ru/eng/mt/v2/i2/p12
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:198
    Full-text PDF :97
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024