Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 1999, Volume 2, Number 2, Pages 3–11 (Mi mt151)  

This article is cited in 4 scientific papers (total in 4 papers)

A Sufficient Condition for Order Boundedness of an Attractor for a Positive Mean Ergodic Operator in a Banach Lattice

S. G. Gorokhovaa, È. Yu. Emel'yanovb

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (245 kB) Citations (4)
Abstract: We establish that a positive mean ergodic operator with a quasi-order-bounded attractor on a Banach lattice has an order-bounded attractor. This generalizes the recent result of F. Räbiger [1, Main Lemma 3.3] that was proven under the additional assumption that the operator in question is contractive. As an application, several theorems are established which generalize some results of [1–3].
Key words: Banach lattice, KB-space, contractive operator, attractor for an operator, positive mean ergodic operator, asymptotically periodic operator.
Received: 30.11.1998
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: S. G. Gorokhova, È. Yu. Emel'yanov, “A Sufficient Condition for Order Boundedness of an Attractor for a Positive Mean Ergodic Operator in a Banach Lattice”, Mat. Tr., 2:2 (1999), 3–11; Siberian Adv. Math., 9:3 (1999), 78–85
Citation in format AMSBIB
\Bibitem{GorEme99}
\by S.~G.~Gorokhova, \`E.~Yu.~Emel'yanov
\paper A Sufficient Condition for Order Boundedness of an~Attractor for a~Positive Mean Ergodic Operator in a~Banach Lattice
\jour Mat. Tr.
\yr 1999
\vol 2
\issue 2
\pages 3--11
\mathnet{http://mi.mathnet.ru/mt151}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1767821}
\zmath{https://zbmath.org/?q=an:0944.47022}
\transl
\jour Siberian Adv. Math.
\yr 1999
\vol 9
\issue 3
\pages 78--85
Linking options:
  • https://www.mathnet.ru/eng/mt151
  • https://www.mathnet.ru/eng/mt/v2/i2/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:482
    Full-text PDF :117
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024