Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2002, Volume 5, Number 1, Pages 135–166 (Mi mt105)  

This article is cited in 1 scientific paper (total in 1 paper)

$\omega$-Stable Trigonometries on a Projective Plane

S. V. Sudoplatov

Novosibirsk State Technical University
References:
Abstract: Using the well-known Hrushovski construction, we prove that, for every countable group $G$, there exists an $\omega$-stable trigonometry of the group $G\ast F_\omega$, where $F_\omega$ is the free group of countable rank, on a non-Desarguesian projective plane. We also suggest a new approach to constructing generic models.
Key words: trigonometry of a group, projective plane, $\omega$-stable theory, generic trigonometry.
Received: 24.10.2001
Bibliographic databases:
UDC: 510.67+513
Language: Russian
Citation: S. V. Sudoplatov, “$\omega$-Stable Trigonometries on a Projective Plane”, Mat. Tr., 5:1 (2002), 135–166; Siberian Adv. Math., 12:4 (2002), 97–125
Citation in format AMSBIB
\Bibitem{Sud02}
\by S.~V.~Sudoplatov
\paper $\omega$-Stable Trigonometries on a Projective Plane
\jour Mat. Tr.
\yr 2002
\vol 5
\issue 1
\pages 135--166
\mathnet{http://mi.mathnet.ru/mt105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1918901}
\zmath{https://zbmath.org/?q=an:1047.03030|1013.03040}
\transl
\jour Siberian Adv. Math.
\yr 2002
\vol 12
\issue 4
\pages 97--125
Linking options:
  • https://www.mathnet.ru/eng/mt105
  • https://www.mathnet.ru/eng/mt/v5/i1/p135
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :95
    References:48
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024