|
Trudy Moskovskogo Matematicheskogo Obshchestva, 2022, Volume 83, Issue 2, Pages 319–344
(Mi mmo676)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Chebyshev–Padé approximants for multivalued functions
E. A. Rakhmanova, S. P. Suetinb a University of South Florida
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Abstract:
The paper discusses the connection between the linear Chebyshev–Padé approximants for an analytic function $f$
and diagonal type I Hermite–Padé polynomials for the set of functions $[1, f_1, f_2]$, where the pair of functions $f_1$, $f_2$
forms a Nikishin system. Both problems can ultimately be reduced to certain convergence problems for multipoint Padé approximants. On the other hand, the denominators of multipoint Padé approximants are non-Hermitian orthogonal polynomials with analytical weights. Thus, to study all the above problems, the general method created by Herbert Stahl can be applied. Stahl’s method is not yet sufficiently developed to obtain general results on these problems. In particular, many key convergence problems for Chebyshev–Padé approximants for functions with arbitrary configurations of branch points remain open. In this paper, we consider several important general and particular results related to this case, some already well known, and also formulate two general hypotheses in the indicated direction.
Received: 20.07.2022
Citation:
E. A. Rakhmanov, S. P. Suetin, “Chebyshev–Padé approximants for multivalued functions”, Tr. Mosk. Mat. Obs., 83, no. 2, MCCME, M., 2022, 319–344
Linking options:
https://www.mathnet.ru/eng/mmo676 https://www.mathnet.ru/eng/mmo/v83/i2/p319
|
|