Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2022, Volume 83, Issue 2, Pages 241–256 (Mi mmo672)  

On properties of limits of solutions in the noncommutative sigma model

A. V. Domrina

Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
References:
Abstract: In this article, sufficient conditions are obtained for the limit of a sequence of solutions converging in the operator norm also to be a solution. It is shown that the extended solutions of such a sequence of solutions converge to an extended solution of the limit. It is also shown that the limit of a sequence of solutions with uniton number 3 can only have uniton number 2 or 3.
Received: 23.04.2022
Revised: 15.08.2022
English version:
Transactions of the Moscow Mathematical Society, 2022
DOI: https://doi.org/10.1090/mosc/335
Document Type: Article
UDC: 517.986.9
MSC: 81T10, 81T75
Language: Russian
Citation: A. V. Domrina, “On properties of limits of solutions in the noncommutative sigma model”, Tr. Mosk. Mat. Obs., 83, no. 2, MCCME, M., 2022, 241–256
Citation in format AMSBIB
\Bibitem{Dom22}
\by A.~V.~Domrina
\paper On properties of limits of solutions in the noncommutative sigma model
\serial Tr. Mosk. Mat. Obs.
\yr 2022
\vol 83
\issue 2
\pages 241--256
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo672}
Linking options:
  • https://www.mathnet.ru/eng/mmo672
  • https://www.mathnet.ru/eng/mmo/v83/i2/p241
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:59
    Full-text PDF :13
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024