Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2022, Volume 83, Issue 1, Pages 1–16 (Mi mmo664)  

This article is cited in 1 scientific paper (total in 1 paper)

On functions of finite analytical complexity

M. A. Stepanova

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (202 kB) Citations (1)
References:
Abstract: We construct examples of polynomials and analytic functions of any predetermined finite analytical complexity $n$. We obtain an estimate of the order of derivative of the differential-algebraic criteria for membership in the class $Cl_n$ of functions of analytical complexity not higher than $n$. We find uniform estimates for finite values $d_n$ of the analytic spectrum $\{d_n\}$ for systems of differential-algebraic equations of fixed order of derivative $\delta$.
Funding agency Grant number
Russian Science Foundation 19-11-00316
This study was supported by a grant from the Russian Science Foundation (project No. 19-11-00316).
Received: 18.06.2020
Revised: 29.01.2021
English version:
Transactions of the Moscow Mathematical Society
DOI: https://doi.org/10.1090/mosc/342
Document Type: Article
UDC: 517.55, 512.628.2
MSC: 32A10
Language: Russian
Citation: M. A. Stepanova, “On functions of finite analytical complexity”, Tr. Mosk. Mat. Obs., 83, no. 1, MCCME, M., 2022, 1–16
Citation in format AMSBIB
\Bibitem{Ste22}
\by M.~A.~Stepanova
\paper On functions of finite analytical complexity
\serial Tr. Mosk. Mat. Obs.
\yr 2022
\vol 83
\issue 1
\pages 1--16
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo664}
Linking options:
  • https://www.mathnet.ru/eng/mmo664
  • https://www.mathnet.ru/eng/mmo/v83/i1/p1
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025