Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2021, Volume 82, Issue 1, Pages 3–18 (Mi mmo644)  

This article is cited in 2 scientific papers (total in 2 papers)

Positive entropy implies chaos along any infinite sequence

Wen Huanga, Jian Lib, Xiangdong Yea

a School of Mathematical Sciences, University of Science and Technology of China
b Department of Mathematics, Shantou University
Full-text PDF (220 kB) Citations (2)
References:
Abstract: Let $G$ be an infinite countable discrete amenable group. For any $G$-action on a compact metric space $(X,\rho)$, it turns out that if the action has positive topological entropy, then for any sequence $\{s_i\}_{i=1}^{+\infty}$ with pairwise distinct elements in $G$ there exists a Cantor subset $K$ of $X$ which is Li–Yorke chaotic along this sequence, that is, for any two distinct points $x,y\in K$, one has
$$ \limsup\limits_{i\to+\infty}\rho(s_i x,s_iy)>0,\ \text{and}\ \liminf_{i\to+\infty}\rho(s_ix,s_iy)=0. $$
Key words and phrases: Li–Yorke chaos, topological entropy, measure-theoretic entropy, amenable group action.
Funding agency Grant number
National Natural Science Foundation of China 11731003
11771264
12090012
12031019
Natural Science Foundation of Guangdong Province 2018B030306024
This research was supported in part by NNSF of China (11731003, 11771264, 12090012, 12031019) and NSF of Guangdong Province (2018B030306024).
Received: 14.06.2020
Revised: 14.12.2020
English version:
Transactions of the Moscow Mathematical Society, 2021, Volume 82, Pages 1–14
DOI: https://doi.org/10.1090/mosc/315
Bibliographic databases:
Document Type: Article
UDC: 517.987.5
MSC: 37B05, 37B40, 37A35
Language: English
Citation: Wen Huang, Jian Li, Xiangdong Ye, “Positive entropy implies chaos along any infinite sequence”, Tr. Mosk. Mat. Obs., 82, no. 1, MCCME, M., 2021, 3–18; Trans. Moscow Math. Soc., 82 (2021), 1–14
Citation in format AMSBIB
\Bibitem{HuaLiYe21}
\by Wen~Huang, Jian~Li, Xiangdong~Ye
\paper Positive entropy implies chaos along any infinite sequence
\serial Tr. Mosk. Mat. Obs.
\yr 2021
\vol 82
\issue 1
\pages 3--18
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo644}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2021
\vol 82
\pages 1--14
\crossref{https://doi.org/10.1090/mosc/315}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85127523445}
Linking options:
  • https://www.mathnet.ru/eng/mmo644
  • https://www.mathnet.ru/eng/mmo/v82/i1/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:70
    Full-text PDF :12
    References:20
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024