Abstract:
We study the one-dimensional Dirac operator with a complex-valued summable potential. The possibility of constructing an operator group generated by this operator is investigated in various spaces. Estimates are established for the growth of the group constructed.
Key words and phrases:
Dirac operator, operator semigroups.
Citation:
A. M. Savchuk, I. V. Sadovnichaya, “On the existence of an operator group generated by the one-dimensional Dirac system”, Tr. Mosk. Mat. Obs., 80, no. 2, MCCME, M., 2019, 275–294; Trans. Moscow Math. Soc., 80 (2019), 235–250
\Bibitem{SavSad19}
\by A.~M.~Savchuk, I.~V.~Sadovnichaya
\paper On the existence of an operator group generated by the one-dimensional Dirac system
\serial Tr. Mosk. Mat. Obs.
\yr 2019
\vol 80
\issue 2
\pages 275--294
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo631}
\elib{https://elibrary.ru/item.asp?id=43277238}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2019
\vol 80
\pages 235--250
\crossref{https://doi.org/10.1090/mosc/297}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083796018}
Linking options:
https://www.mathnet.ru/eng/mmo631
https://www.mathnet.ru/eng/mmo/v80/i2/p275
This publication is cited in the following 2 articles:
A. M. Savchuk, I. V. Sadovnichaya, “The Operator Group Generated by the One-dimensional Dirac System”, Lobachevskii J Math, 45:9 (2024), 4582
M. Yu. Vatolkin, “On the spectrum of a quasidifferential boundary value problem of the second order”, Russian Math. (Iz. VUZ), 67:1 (2023), 1–19