Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2019, Volume 80, Issue 2, Pages 221–246 (Mi mmo628)  

This article is cited in 5 scientific papers (total in 5 papers)

An explicit form for extremal functions in the embedding constant problem for Sobolev spaces

I. A. Sheipak, T. A. Garmanova

Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia
Full-text PDF (350 kB) Citations (5)
References:
Abstract: The embedding constants for the Sobolev spaces $ \mathring W^n_2[0;1]\hookrightarrow \mathring W^k_2[0;1]$ ($ 0\le k\le n-1$) are studied. A relationship between the embedding constants and the norms of the functionals $ f\mapsto f^{(k)}(a)$ in the space $ \mathring W^n_2[0;1]$ is given. An explicit form of the functions $ g_{n,k}\in \mathring W^n_2[0;1]$ on which these functionals attain their norm is found. These functions are also extremals for the embedding constants. A connection between the embedding constants and the Legendre polynomials is put forward. A detailed study is made of the embedding constants for $ k=3$ and $ k=5$: explicit formulas for extreme points are obtained, global maximum points calculated, and the values of the sharp embedding constants is given. A link between the embedding constants and some class of spectral problems with distribution coefficients is established.
Key words and phrases: Sobolev spaces, embedding constants, Legendre polynomials.
Funding agency Grant number
Russian Science Foundation 17-11-01215
Russian Foundation for Basic Research 19-01-00240
The results of §§2 and 3 were obtained with the support of the Russian Foundation for Basic Research (grant no. 19-01-00240) and the results of §§4–6 were obtained with the support of the Russian Science Foundation (grant no. 17-11-01215).
Received: 16.05.2019
English version:
Transactions of the Moscow Mathematical Society, 2019, Volume 80, Pages 189–210
DOI: https://doi.org/10.1090/mosc/292
Bibliographic databases:
Document Type: Article
UDC: 517.518.23, 517.984
MSC: 46E35
Language: Russian
Citation: I. A. Sheipak, T. A. Garmanova, “An explicit form for extremal functions in the embedding constant problem for Sobolev spaces”, Tr. Mosk. Mat. Obs., 80, no. 2, MCCME, M., 2019, 221–246; Trans. Moscow Math. Soc., 80 (2019), 189–210
Citation in format AMSBIB
\Bibitem{SheGar19}
\by I.~A.~Sheipak, T.~A.~Garmanova
\paper An explicit form for extremal functions in the embedding constant problem for Sobolev spaces
\serial Tr. Mosk. Mat. Obs.
\yr 2019
\vol 80
\issue 2
\pages 221--246
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo628}
\elib{https://elibrary.ru/item.asp?id=43277171}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2019
\vol 80
\pages 189--210
\crossref{https://doi.org/10.1090/mosc/292}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083777138}
Linking options:
  • https://www.mathnet.ru/eng/mmo628
  • https://www.mathnet.ru/eng/mmo/v80/i2/p221
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :77
    References:37
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024