Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2019, Volume 80, Issue 2, Pages 147–156 (Mi mmo626)  

The finiteness of the spectrum of boundary value problems defined on a geometric graph

V. A. Sadovnichiia, Ya. T. Sultanaevb, A. M. Akhtyamovcd

a Lomonosov Moscow State University, Moscow, Russia 119234
b Bashkir State Pedagogical University n. a. M. Akmulla, Ufa, Russia
c Bashkir State University, Ufa, Russia
d Mavlyutov Institute of Mechanics, Ufa Investigation Center R.A.S., Ufa, Russia
References:
Abstract: We consider boundary value problems on a geometric graph with a polynomial occurrence of spectral parameter in the differential equation. It has previously been shown (see A. M. Akhtyamov [Differ. Equ.55 (2019), no. 1, pp. 142-144]) that a boundary value problem for one differential equation whose characteristic equation has simple roots cannot have a finite spectrum, and a boundary value problem for one differential equation can have any given finite spectrum when the characteristic polynomial has multiple roots. In this paper, we obtain a similar result for differential equations defined on a geometric graph. We show that a boundary value problem on a geometric graph cannot have a finite spectrum if all its characteristic equations have simple roots, and a boundary value problem has a finite spectrum if at least one characteristic equation has multiple roots. We also give results showing that a boundary value problem can have any given finite spectrum.
Key words and phrases: Boundary value problem on a geometric graph, characteristic equation, finite spectrum.
Funding agency Grant number
Russian Foundation for Basic Research 18-51-06002_Aз_a
18-01-00250_a
17-41-020230_р_a
17-41-020195_р_а
This work was supported by the Russian Foundation for Basic Research, grants. no. 18-51-06002-Az_a, 18-01-00250-a, 17-41-020230-p_a, and 17-41-020195-p_a.
Received: 12.04.2019
English version:
Transactions of the Moscow Mathematical Society, 2019, Volume 80, Pages 123–131
DOI: https://doi.org/10.1090/mosc/293
Bibliographic databases:
Document Type: Article
UDC: 517.984
MSC: 34B45, 47E05
Language: Russian
Citation: V. A. Sadovnichii, Ya. T. Sultanaev, A. M. Akhtyamov, “The finiteness of the spectrum of boundary value problems defined on a geometric graph”, Tr. Mosk. Mat. Obs., 80, no. 2, MCCME, M., 2019, 147–156; Trans. Moscow Math. Soc., 80 (2019), 123–131
Citation in format AMSBIB
\Bibitem{SadSulAkh19}
\by V.~A.~Sadovnichii, Ya.~T.~Sultanaev, A.~M.~Akhtyamov
\paper The finiteness of the spectrum of boundary value problems defined on a geometric graph
\serial Tr. Mosk. Mat. Obs.
\yr 2019
\vol 80
\issue 2
\pages 147--156
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo626}
\elib{https://elibrary.ru/item.asp?id=43279414}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2019
\vol 80
\pages 123--131
\crossref{https://doi.org/10.1090/mosc/293}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083770043}
Linking options:
  • https://www.mathnet.ru/eng/mmo626
  • https://www.mathnet.ru/eng/mmo/v80/i2/p147
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:268
    Full-text PDF :105
    References:30
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024