Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2017, Volume 78, Issue 2, Pages 209–226 (Mi mmo598)  

This article is cited in 10 scientific papers (total in 10 papers)

Automorphism groups of affine varieties and a characterization of affine $n$-space

H. Kraft

Universität Basel, Basel, Switzerland
References:
Abstract: We show that the automorphism group of affine $n$-space $\mathbb{A}^n$ determines $\mathbb{A}^n$ up to isomorphism: If $X$ is a connected affine variety such that $\mathrm{Aut}(X) \simeq \mathrm{Aut}(\mathbb{A}^n)$ as ind-groups, then $X \simeq \mathbb{A}^n$ as varieties.
We also show that every torus appears as $\mathrm{Aut}(X)$ for a suitable irreducible affine variety $X$, but that $\mathrm{Aut}(X)$ cannot be isomorphic to a semisimple group. In fact, if $\mathrm{Aut}(X)$ is finite dimensional and if $X \not\simeq \mathbb{A}^1$, then the connected component $\mathrm{Aut}(X)^{\circ}$ is a torus.
Concerning the structure of $\mathrm{Aut}(\mathbb{A}^n)$ we prove that any homomorphism $\mathrm{Aut}(\mathbb{A}^n) \to \mathcal{G}$ of ind-groups either factors through $\mathrm{jac}\colon{\mathrm{Aut}(\mathbb{A}^n)} \to {\Bbbk^*}$ where $\mathrm{jac}$ is the Jacobian determinant, or it is a closed immersion. For $\mathrm{SAut}(\mathbb{A}^n):=\ker(\mathrm{jac})\subset \mathrm{Aut}(\mathbb{A}^n)$ we show that every nontrivial homomorphism $\mathrm{SAut}(\mathbb{A}^n) \to \mathcal{G}$ is a closed immersion.
Finally, we prove that every non-trivial homomorphism $\phi\colon{\mathrm{SAut}(\mathbb{A}^n)} \to\mathrm{SAut}(\mathbb{A}^n)$ is an automorphism, and that $\phi$ is given by conjugation with an element from $\mathrm{Aut}(\mathbb{A}^n)$.
Key words and phrases: automorphism groups of affine varieties, ind-groups, Lie algebras of ind-groups, vector fields, affine $n$-spaces.
Funding agency Grant number
Swiss National Science Foundation
The author was partially supported by Swiss National Science Foundation.
Received: 28.03.2017
Revised: 08.05.2017
English version:
Transactions of the Moscow Mathematical Society, 2017, Volume 78, Pages 171–186
DOI: https://doi.org/10.1090/mosc/262
Bibliographic databases:
Document Type: Article
UDC: 512.745, 512.745.4, 512.714
Language: English
Citation: H. Kraft, “Automorphism groups of affine varieties and a characterization of affine $n$-space”, Tr. Mosk. Mat. Obs., 78, no. 2, MCCME, M., 2017, 209–226; Trans. Moscow Math. Soc., 78 (2017), 171–186
Citation in format AMSBIB
\Bibitem{Kra17}
\by H.~Kraft
\paper Automorphism groups of affine varieties and a~characterization of affine~$n$-space
\serial Tr. Mosk. Mat. Obs.
\yr 2017
\vol 78
\issue 2
\pages 209--226
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo598}
\elib{https://elibrary.ru/item.asp?id=37045063}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2017
\vol 78
\pages 171--186
\crossref{https://doi.org/10.1090/mosc/262}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85037617939}
Linking options:
  • https://www.mathnet.ru/eng/mmo598
  • https://www.mathnet.ru/eng/mmo/v78/i2/p209
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:194
    Full-text PDF :66
    References:33
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024