|
Trudy Moskovskogo Matematicheskogo Obshchestva, 2015, Volume 76, Issue 1, Pages 67–84
(Mi mmo571)
|
|
|
|
This article is cited in 9 scientific papers (total in 9 papers)
The construction of Dirichlet and de la Vallée–Poussin–Nikol'skiĭ kernels for j-Bessel Fourier integrals
L. N. Lyakhov Voronezh State University
Abstract:
We give elementary proofs of some properties of the generalized shift generated by a spherical symmetry. We construct B-kernels for Fourier integrals with respect to Bessel j-functions (Fourier-Bessel transforms). These are designed to play the same role as Dirichlet and de la Vallée–Poussin–Nikol'skiĭ kernels in the theory of trigonometric Fourier integrals and in the theory of function approximation.
Key words and phrases:
Generalized shift, Bessel function, even and odd Bessel j-functions, Hankel (Bessel) transform, Fourier–Bessel transform, Dirichlet kernel, de la Vallée-Poussin kernel.
Received: 31.03.2014 Revised: 02.06.2014
Citation:
L. N. Lyakhov, “The construction of Dirichlet and de la Vallée–Poussin–Nikol'skiĭ kernels for j-Bessel Fourier integrals”, Tr. Mosk. Mat. Obs., 76, no. 1, MCCME, M., 2015, 67–84; Trans. Moscow Math. Soc., 76:1 (2015), 55–69
Linking options:
https://www.mathnet.ru/eng/mmo571 https://www.mathnet.ru/eng/mmo/v76/i1/p67
|
Statistics & downloads: |
Abstract page: | 495 | Full-text PDF : | 193 | References: | 60 |
|