Loading [MathJax]/jax/output/SVG/config.js
Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2014, Volume 75, Issue 2, Pages 335–359 (Mi mmo569)  

This article is cited in 26 scientific papers (total in 26 papers)

Sturm–Liouville operators

K. A. Mirzoev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Let $ (a,b)\subset \mathbb{R}$ be a finite or infinite interval, let $ p_0(x)$, $ q_0(x)$, and $ p_1(x)$, $ x\in (a,b)$, be real-valued measurable functions such that $ p_0,p^{-1}_0$, $ p^2_1p^{-1}_0$, and $ q^2_0p^{-1}_0$ are locally Lebesgue integrable (i.e., lie in the space $ L^1_{\operatorname {loc}}(a,b)$), and let $ w(x)$, $ x\in (a,b)$, be an almost everywhere positive function. This paper gives an introduction to the spectral theory of operators generated in the space $ \mathcal {L}^2_w(a,b)$ by formal expressions of the form
$$ l[f]:=w^{-1}\{-(p_0f')'+i[(q_0f)'+q_0f']+p'_1f\}, $$
where all derivatives are understood in the sense of distributions. The construction described in the paper permits one to give a sound definition of the minimal operator $ L_0$ generated by the expression $ l[f]$ in $\mathcal {L}^2_w(a,b)$ and include $ L_0$ in the class of operators generated by symmetric (formally self-adjoint) second-order quasi-differential expressions with locally integrable coefficients. In what follows, we refer to these operators as Sturm–Liouville operators. Thus, the well-developed spectral theory of second-order quasi-differential operators is used to study Sturm–Liouville operators with distributional coefficients. The main aim of the paper is to construct a Titchmarsh–Weyl theory for these operators. Here the problem on the deficiency indices of $ L_0$, i.e., on the conditions on $ p_0$, $ q_0$, and $ p_1$ under which Weyl's limit point or limit circle case is realized, is a key problem. We verify the efficiency of our results for the example of a Hamiltonian with $ \delta $-interactions of intensities $ h_k$ centered at some points $ x_k$, where
$$ l[f]=-f''+\sum _{j}h_j\delta (x-x_j)f. $$
Received: 07.05.2014
English version:
Transactions of the Moscow Mathematical Society, 2014, Volume 75, Pages 281–299
DOI: https://doi.org/10.1090/S0077-1554-2014-00234-X
Bibliographic databases:
Document Type: Article
UDC: 517.984.46, 517.927.25
MSC: 34B24, 34B20, 34B40
Language: Russian
Citation: K. A. Mirzoev, “Sturm–Liouville operators”, Tr. Mosk. Mat. Obs., 75, no. 2, MCCME, M., 2014, 335–359; Trans. Moscow Math. Soc., 75 (2014), 281–299
Citation in format AMSBIB
\Bibitem{Mir14}
\by K.~A.~Mirzoev
\paper Sturm--Liouville operators
\serial Tr. Mosk. Mat. Obs.
\yr 2014
\vol 75
\issue 2
\pages 335--359
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo569}
\elib{https://elibrary.ru/item.asp?id=23780168}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2014
\vol 75
\pages 281--299
\crossref{https://doi.org/10.1090/S0077-1554-2014-00234-X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960125570}
Linking options:
  • https://www.mathnet.ru/eng/mmo569
  • https://www.mathnet.ru/eng/mmo/v75/i2/p335
  • This publication is cited in the following 26 articles:
    1. M. Yu. Vatolkin, “On the Approximation of the First Eigenvalue of Some Boundary Value Problems”, Comput. Math. and Math. Phys., 64:6 (2024), 1224  crossref
    2. M. Yu. Vatolkin, “To the Study of Various Representations of Solutions of Quasi-Differential Equations in the Form of Sums of Series and Some of Their Applications”, Comput. Math. and Math. Phys., 64:11 (2024), 2571  crossref
    3. A. M. Savchuk, I. V. Sadovnichaya, “Spectral Analysis of 1D Dirac System with Summable Potential and Sturm–Liouville Operator with Distribution Coefficients”, Diff Equat, 60:S2 (2024), 145  crossref
    4. N. N. Konechnaja, K. A. Mirzoev, A. A. Shkalikov, “Asymptotics of Solutions of Two-Term Differential Equations”, Math. Notes, 113:2 (2023), 228–242  mathnet  crossref  crossref
    5. M. Yu. Vatolkin, “On the spectrum of a quasidifferential boundary value problem of the second order”, Russian Math. (Iz. VUZ), 67:1 (2023), 1–19  mathnet  crossref  crossref
    6. G. A. Agafonkin, “Reconstruction of the Schrödinger operator with a singular potential on half-line by its prescribed essential spectrum”, Moscow University Mathematics Bulletin, 78:4 (2023), 203–206  mathnet  crossref  crossref  elib
    7. Natalia P. Bondarenko, “Regularization and Inverse Spectral Problems for Differential Operators with Distribution Coefficients”, Mathematics, 11:16 (2023), 3455  crossref
    8. Egor E. Chitorkin, Natalia P. Bondarenko, “Solving the inverse Sturm–Liouville problem with singular potential and with polynomials in the boundary conditions”, Anal.Math.Phys., 13:5 (2023)  crossref
    9. Budyka V.S., Malamud M.M., “Deficiency Indices and Discreteness Property of Block Jacobi Matrices and Dirac Operators With Point Interactions”, J. Math. Anal. Appl., 506:1 (2022), 125582  crossref  mathscinet  isi  scopus
    10. Bondarenko N.P., “Solving An Inverse Problem For the Sturm-Liouville Operator With Singular Potential By Yurko'S Method”, Tamkang J. Math., 52:1, SI (2021), 125–154  crossref  mathscinet  isi  scopus
    11. N. P. Bondarenko, “Direct and Inverse Problems for the Matrix Sturm–Liouville Operator with General Self-Adjoint Boundary Conditions”, Math. Notes, 109:3 (2021), 358–378  mathnet  mathnet  crossref  isi  scopus
    12. A. M. Savchuk, A. A. Shkalikov, “Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients”, Sb. Math., 211:11 (2020), 1623–1659  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. A. M. Savchuk, I. V. Sadovnichaya, “Spektralnyi analiz odnomernoi sistemy Diraka s summiruemym potentsialom i operatora Shturma—Liuvillya s koeffitsientami-raspredeleniyami”, Spektralnyi analiz, SMFN, 66, no. 3, Rossiiskii universitet druzhby narodov, M., 2020, 373–530  mathnet  crossref
    14. N. N. Konechnaja, K. A. Mirzoev, “The Leading Term of the Asymptotics of Solutions of Linear Differential Equations with First-Order Distribution Coefficients”, Math. Notes, 106:1 (2019), 81–88  mathnet  crossref  crossref  mathscinet  isi  elib
    15. N. J. Guliyev, “Schrödinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter”, J. Math. Phys., 60:6 (2019), 063501  crossref  mathscinet  zmath  isi  scopus
    16. N. N. Konechnaja, K. A. Mirzoev, A. A. Shkalikov, “On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients”, Math. Notes, 104:2 (2018), 244–252  mathnet  crossref  crossref  mathscinet  isi  elib
    17. P. Exner, A. Kostenko, M. Malamud, H. Neidhardt, “Spectral theory of infinite quantum graphs”, Ann. Henri Poincare, 19:11 (2018), 3457–3510  crossref  mathscinet  zmath  isi  scopus
    18. A. Sakhnovich, “Hamiltonian systems and Sturm-Liouville equations: Darboux transformation and applications”, Integr. Equ. Oper. Theory, 88:4 (2017), 535–557  crossref  mathscinet  zmath  isi  scopus
    19. A. Konstantinov, O. Konstantinov, “Sturm-Liouville operators with matrix distributional coefficients”, Methods Funct. Anal. Topol., 23:1 (2017), 51–59  mathscinet  zmath  isi
    20. I. N. Braeutigam, “Limit-point criteria for the matrix Sturm-Liouville operator and its powers”, Opusc. Math., 37:1, SI (2017), 5–19  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:1172
    Full-text PDF :352
    References:102
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025