Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2014, Volume 75, Issue 2, Pages 335–359 (Mi mmo569)  

This article is cited in 24 scientific papers (total in 24 papers)

Sturm–Liouville operators

K. A. Mirzoev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Let $ (a,b)\subset \mathbb{R}$ be a finite or infinite interval, let $ p_0(x)$, $ q_0(x)$, and $ p_1(x)$, $ x\in (a,b)$, be real-valued measurable functions such that $ p_0,p^{-1}_0$, $ p^2_1p^{-1}_0$, and $ q^2_0p^{-1}_0$ are locally Lebesgue integrable (i.e., lie in the space $ L^1_{\operatorname {loc}}(a,b)$), and let $ w(x)$, $ x\in (a,b)$, be an almost everywhere positive function. This paper gives an introduction to the spectral theory of operators generated in the space $ \mathcal {L}^2_w(a,b)$ by formal expressions of the form
$$ l[f]:=w^{-1}\{-(p_0f')'+i[(q_0f)'+q_0f']+p'_1f\}, $$
where all derivatives are understood in the sense of distributions. The construction described in the paper permits one to give a sound definition of the minimal operator $ L_0$ generated by the expression $ l[f]$ in $\mathcal {L}^2_w(a,b)$ and include $ L_0$ in the class of operators generated by symmetric (formally self-adjoint) second-order quasi-differential expressions with locally integrable coefficients. In what follows, we refer to these operators as Sturm–Liouville operators. Thus, the well-developed spectral theory of second-order quasi-differential operators is used to study Sturm–Liouville operators with distributional coefficients. The main aim of the paper is to construct a Titchmarsh–Weyl theory for these operators. Here the problem on the deficiency indices of $ L_0$, i.e., on the conditions on $ p_0$, $ q_0$, and $ p_1$ under which Weyl's limit point or limit circle case is realized, is a key problem. We verify the efficiency of our results for the example of a Hamiltonian with $ \delta $-interactions of intensities $ h_k$ centered at some points $ x_k$, where
$$ l[f]=-f''+\sum _{j}h_j\delta (x-x_j)f. $$
Received: 07.05.2014
English version:
Transactions of the Moscow Mathematical Society, 2014, Volume 75, Pages 281–299
DOI: https://doi.org/10.1090/S0077-1554-2014-00234-X
Bibliographic databases:
Document Type: Article
UDC: 517.984.46, 517.927.25
MSC: 34B24, 34B20, 34B40
Language: Russian
Citation: K. A. Mirzoev, “Sturm–Liouville operators”, Tr. Mosk. Mat. Obs., 75, no. 2, MCCME, M., 2014, 335–359; Trans. Moscow Math. Soc., 75 (2014), 281–299
Citation in format AMSBIB
\Bibitem{Mir14}
\by K.~A.~Mirzoev
\paper Sturm--Liouville operators
\serial Tr. Mosk. Mat. Obs.
\yr 2014
\vol 75
\issue 2
\pages 335--359
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo569}
\elib{https://elibrary.ru/item.asp?id=23780168}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2014
\vol 75
\pages 281--299
\crossref{https://doi.org/10.1090/S0077-1554-2014-00234-X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960125570}
Linking options:
  • https://www.mathnet.ru/eng/mmo569
  • https://www.mathnet.ru/eng/mmo/v75/i2/p335
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:1107
    Full-text PDF :327
    References:88
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024