Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2014, Volume 75, Issue 2, Pages 245–276 (Mi mmo566)  

This article is cited in 1 scientific paper (total in 1 paper)

Uniform convexity and variational convergence

V. V. Zhikova, S. E. Pastukhovab

a Vladimir State University
b Moscow Institute of Radio-Engineering, Electronics and Automation
Full-text PDF (377 kB) Citations (1)
References:
Abstract: Let $ \Omega $ be a domain in $ \mathbb{R}^d$. We establish the uniform convexity of the $ \Gamma $-limit of a sequence of Carathéodory integrands $ f(x,\xi )\colon \Omega { \times }\mathbb{R}^d\to \mathbb{R}$ subjected to a two-sided power-law estimate of coercivity and growth with respect to $ \xi $ with exponents $ \alpha $ and $ \beta $, $ 1<\alpha \le \beta <\infty $, and having a common modulus of convexity with respect to $ \xi $. In particular, the $ \Gamma $-limit of a sequence of power-law integrands of the form $ \vert\xi \vert^{p(x)}$, where the variable exponent $ p\colon \Omega \to [\alpha ,\beta ]$ is a measurable function, is uniformly convex.
We prove that one can assign a uniformly convex Orlicz space to the $ \Gamma $-limit of a sequence of power-law integrands. A natural $ \Gamma $-closed extension of the class of power-law integrands is found.
Applications to the homogenization theory for functionals of the calculus of variations and for monotone operators are given.
Received: 29.03.2014
English version:
Transactions of the Moscow Mathematical Society, 2014, Volume 75, Pages 205–231
DOI: https://doi.org/10.1090/S0077-1554-2014-00232-6
Bibliographic databases:
Document Type: Article
UDC: 517.951, 517.956
Language: Russian
Citation: V. V. Zhikov, S. E. Pastukhova, “Uniform convexity and variational convergence”, Tr. Mosk. Mat. Obs., 75, no. 2, MCCME, M., 2014, 245–276; Trans. Moscow Math. Soc., 75 (2014), 205–231
Citation in format AMSBIB
\Bibitem{ZhiPas14}
\by V.~V.~Zhikov, S.~E.~Pastukhova
\paper Uniform convexity and variational convergence
\serial Tr. Mosk. Mat. Obs.
\yr 2014
\vol 75
\issue 2
\pages 245--276
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo566}
\elib{https://elibrary.ru/item.asp?id=23780165}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2014
\vol 75
\pages 205--231
\crossref{https://doi.org/10.1090/S0077-1554-2014-00232-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960110966}
Linking options:
  • https://www.mathnet.ru/eng/mmo566
  • https://www.mathnet.ru/eng/mmo/v75/i2/p245
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:520
    Full-text PDF :178
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024