Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2014, Volume 75, Issue 2, Pages 181–204 (Mi mmo563)  

This article is cited in 7 scientific papers (total in 7 papers)

Riesz basis property of Hill operators with potentials in weighted spaces

P. Djakova, B. Mityaginb

a Sabanci University, Orhanli, Istanbul, Turkey
b Department of Mathematics, The Ohio State University
Full-text PDF (327 kB) Citations (7)
References:
Abstract: Consider the Hill operator $L(v)=-d^2/dx^2+v(x)$ on $[0,\pi]$ with Dirichlet, periodic or antiperiodic boundary conditions; then for large enough $n$ close to $n^2$ there are one Dirichlet eigenvalue $\mu_n$ and two periodic (if $n$ is even) or antiperiodic (if $n$ is odd) eigenvalues $\lambda_n^-$, $\lambda_n^+$ (counted with multiplicity).
We describe classes of complex potentials $v(x)=\sum_{2\mathbb{Z}}V(k)e^{ikx}$ in weighted spaces (defined in terms of the Fourier coefficients of $v$) such that the periodic (or antiperiodic) root function system of $L(v)$ contains a Riesz basis if and only if
$$ V(-2n)\asymp V(2n) \text{ as } n\in2\mathbb{N}\ (\text{or } n\in1+2\mathbb{N}), \quad n\to\infty. $$
For such potentials we prove that $\lambda_n^+-\lambda_n^-\sim\pm 2\sqrt{V(-2n)V(2n)}$ and
$$ \mu_n-\frac12(\lambda_n^++\lambda_n^-)\sim-\frac12(V(-2n)+V(2n)). $$

References: 32 entries.
Key words and phrases: Hill operator, periodic and antiperiodic boundary conditions, Riesz bases.
Received: 15.03.2014
English version:
Transactions of the Moscow Mathematical Society, 2014, Volume 75, Pages 151–172
DOI: https://doi.org/10.1090/S0077-1554-2014-00230-2
Bibliographic databases:
Document Type: Article
UDC: 517.9+517.43
MSC: 47E05, 34L40, 34L10
Language: English
Citation: P. Djakov, B. Mityagin, “Riesz basis property of Hill operators with potentials in weighted spaces”, Tr. Mosk. Mat. Obs., 75, no. 2, MCCME, M., 2014, 181–204; Trans. Moscow Math. Soc., 75 (2014), 151–172
Citation in format AMSBIB
\Bibitem{DjaMit14}
\by P.~Djakov, B.~Mityagin
\paper Riesz basis property of Hill operators with potentials in weighted spaces
\serial Tr. Mosk. Mat. Obs.
\yr 2014
\vol 75
\issue 2
\pages 181--204
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo563}
\elib{https://elibrary.ru/item.asp?id=23780162}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2014
\vol 75
\pages 151--172
\crossref{https://doi.org/10.1090/S0077-1554-2014-00230-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960101412}
Linking options:
  • https://www.mathnet.ru/eng/mmo563
  • https://www.mathnet.ru/eng/mmo/v75/i2/p181
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:451
    Full-text PDF :127
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024