Abstract:
Consider the Hill operator L(v)=−d2/dx2+v(x) on [0,π] with Dirichlet, periodic or antiperiodic
boundary conditions; then for large enough n close to n2 there are one Dirichlet eigenvalue μn and
two periodic (if n is even) or antiperiodic (if n is odd) eigenvalues λ−n, λ+n
(counted with multiplicity).
We describe classes of complex potentials v(x)=∑2ZV(k)eikx
in weighted spaces (defined in terms of the Fourier coefficients of v) such that the periodic (or antiperiodic) root function system of L(v) contains a Riesz basis if and only if
V(−2n)≍V(2n) as n∈2N(or n∈1+2N),n→∞.
For such potentials we prove that λ+n−λ−n∼±2√V(−2n)V(2n) and
μn−12(λ+n+λ−n)∼−12(V(−2n)+V(2n)).
References: 32 entries.
Key words and phrases:
Hill operator, periodic and antiperiodic boundary conditions, Riesz bases.
Citation:
P. Djakov, B. Mityagin, “Riesz basis property of Hill operators with potentials in weighted spaces”, Tr. Mosk. Mat. Obs., 75, no. 2, MCCME, M., 2014, 181–204; Trans. Moscow Math. Soc., 75 (2014), 151–172
\Bibitem{DjaMit14}
\by P.~Djakov, B.~Mityagin
\paper Riesz basis property of Hill operators with potentials in weighted spaces
\serial Tr. Mosk. Mat. Obs.
\yr 2014
\vol 75
\issue 2
\pages 181--204
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo563}
\elib{https://elibrary.ru/item.asp?id=23780162}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2014
\vol 75
\pages 151--172
\crossref{https://doi.org/10.1090/S0077-1554-2014-00230-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960101412}
Linking options:
https://www.mathnet.ru/eng/mmo563
https://www.mathnet.ru/eng/mmo/v75/i2/p181
This publication is cited in the following 8 articles:
A. M. Savchuk, I. V. Sadovnichaya, “Spectral Analysis of 1D Dirac System with Summable Potential
and Sturm–Liouville Operator
with Distribution Coefficients”, Diff Equat, 60:S2 (2024), 145
P. B. Djakov, B. S. Mityagin, “Spectral triangles of non-selfadjoint Hill and Dirac operators”, Russian Math. Surveys, 75:4 (2020), 587–626
A. M. Savchuk, I. V. Sadovnichaya, “Spektralnyi analiz odnomernoi sistemy Diraka s summiruemym potentsialom i operatora Shturma—Liuvillya s koeffitsientami-raspredeleniyami”, Spektralnyi analiz, SMFN, 66, no. 3, Rossiiskii universitet druzhby narodov, M., 2020, 373–530
N. B. Uskova, “Matrichnyi analiz spektralnykh proektorov vozmuschennykh samosopryazhennykh operatorov”, Sib. elektron. matem. izv., 16 (2019), 369–405
I. V. Sadovnichaya, “Classical equiconvergence problem for the Sturm–Liouville operator with a singular potential”, Differ. Equ., 55:4 (2019), 490–499
M. Kamenskii, Ch.-F. Wen, M. Zvereva, “Oscillations of the string with singuliarities”, J. Nonlinear Convex Anal., 20:8, SI (2019), 1525–1545
A. G. Baskakov, D. M. Polyakov, “The method of similar operators in the spectral analysis of the Hill operator with nonsmooth potential”, Sb. Math., 208:1 (2017), 1–43
I. V. Sadovnichaya, “Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces”, Proc. Steklov Inst. Math., 293 (2016), 288–316