|
Trudy Moskovskogo Matematicheskogo Obshchestva, 2014, Volume 75, Issue 2, Pages 181–204
(Mi mmo563)
|
|
|
|
This article is cited in 7 scientific papers (total in 7 papers)
Riesz basis property of Hill operators with potentials in weighted spaces
P. Djakova, B. Mityaginb a Sabanci University, Orhanli, Istanbul, Turkey
b Department of Mathematics, The Ohio State University
Abstract:
Consider the Hill operator $L(v)=-d^2/dx^2+v(x)$ on $[0,\pi]$ with Dirichlet, periodic or antiperiodic
boundary conditions; then for large enough $n$ close to $n^2$ there are one Dirichlet eigenvalue $\mu_n$ and
two periodic (if $n$ is even) or antiperiodic (if $n$ is odd) eigenvalues $\lambda_n^-$, $\lambda_n^+$
(counted with multiplicity).
We describe classes of complex potentials $v(x)=\sum_{2\mathbb{Z}}V(k)e^{ikx}$
in weighted spaces (defined in terms of the Fourier coefficients of $v$) such that the periodic (or antiperiodic) root function system of $L(v)$ contains a Riesz basis if and only if
$$
V(-2n)\asymp V(2n) \text{ as } n\in2\mathbb{N}\ (\text{or } n\in1+2\mathbb{N}), \quad n\to\infty.
$$
For such potentials we prove that $\lambda_n^+-\lambda_n^-\sim\pm 2\sqrt{V(-2n)V(2n)}$ and
$$
\mu_n-\frac12(\lambda_n^++\lambda_n^-)\sim-\frac12(V(-2n)+V(2n)).
$$
References: 32 entries.
Key words and phrases:
Hill operator, periodic and antiperiodic boundary conditions, Riesz bases.
Received: 15.03.2014
Citation:
P. Djakov, B. Mityagin, “Riesz basis property of Hill operators with potentials in weighted spaces”, Tr. Mosk. Mat. Obs., 75, no. 2, MCCME, M., 2014, 181–204; Trans. Moscow Math. Soc., 75 (2014), 151–172
Linking options:
https://www.mathnet.ru/eng/mmo563 https://www.mathnet.ru/eng/mmo/v75/i2/p181
|
Statistics & downloads: |
Abstract page: | 451 | Full-text PDF : | 127 | References: | 66 |
|