Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2014, Volume 75, Issue 2, Pages 107–123 (Mi mmo559)  

This article is cited in 1 scientific paper (total in 1 paper)

Distribution of the eigenvalues of singular differential operators in a space of vector-functions

N. F. Valeeva, È. A. Nazirovab, Ya. T. Sultanaevc

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa
b Bashkir State University, Ufa
c Bashkir State Pedagogical University, Ufa
Full-text PDF (286 kB) Citations (1)
References:
Abstract: A significant part of B. M. Levitan's scientific activity dealt with questions on the distribution of the eigenvalues of differential operators [1]. To study the spectral density, he mainly used Carleman's method, which he perfected. As a rule, he considered scalar differential operators. The purpose of this paper is to study the spectral density of differential operators in a space of vector-functions. The paper consists of two sections. In the first we study the asymptotics of a fourth-order differential operator
$$ y^{(4)}+Q(x)y=\lambda y, $$
both taking account of the rotational velocity of the eigenvectors of the matrix $ Q(x)$ and without taking the rotational velocity of these vectors into account. In Section 2 we study the asymptotics of the spectrum of a non-semi-bounded Sturm–Liouville operator in a space of vector-functions of any finite dimension.
Received: 24.12.2013
Revised: 16.06.2014
English version:
Transactions of the Moscow Mathematical Society, 2014, Volume 75, Pages 89–102
DOI: https://doi.org/10.1090/S0077-1554-2014-00238-7
Bibliographic databases:
Document Type: Article
UDC: 517.926, 517.928, 517.984.5
Language: Russian
Citation: N. F. Valeev, È. A. Nazirova, Ya. T. Sultanaev, “Distribution of the eigenvalues of singular differential operators in a space of vector-functions”, Tr. Mosk. Mat. Obs., 75, no. 2, MCCME, M., 2014, 107–123; Trans. Moscow Math. Soc., 75 (2014), 89–102
Citation in format AMSBIB
\Bibitem{ValNazSul14}
\by N.~F.~Valeev, \`E.~A.~Nazirova, Ya.~T.~Sultanaev
\paper Distribution of the eigenvalues of singular differential operators in a space of vector-functions
\serial Tr. Mosk. Mat. Obs.
\yr 2014
\vol 75
\issue 2
\pages 107--123
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo559}
\elib{https://elibrary.ru/item.asp?id=23780158}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2014
\vol 75
\pages 89--102
\crossref{https://doi.org/10.1090/S0077-1554-2014-00238-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84959053257}
Linking options:
  • https://www.mathnet.ru/eng/mmo559
  • https://www.mathnet.ru/eng/mmo/v75/i2/p107
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:426
    Full-text PDF :120
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024