Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2014, Volume 75, Issue 1, Pages 25–91 (Mi mmo556)  

Einstein equations for invariant metrics on flag spaces and their Newton polytopes

M. M. Graev
References:
Abstract: This paper deals with the number of complex invariant Einstein metrics on flag spaces in the case when the isotropy representation has a simple spectrum. The author has previously showed that this number does not exceed the volume of the Newton polytope of the Einstein equation (in this case, this is a rational system of equations), which coincides with the Newton polytope of the scalar curvature function. The equality is attained precisely when that function has no singular points on the faces of the polytope, which is the case for “pyramidal faces”. This paper studies non-pyramidal faces. They are classified with the aid of ternary symmetric relations (which determine the Newton polytope) in the $ T$-root system (the restriction of the root system of the Lie algebra of the group to the center of the isotropy subalgebra). The classification is mainly done by computer-assisted calculations for classical and exceptional groups in the case when the number of irreducible components does not exceed 10 (and, in some cases, 15).
Received: 25.06.2013
English version:
Transactions of the Moscow Mathematical Society, 2014, Volume 75, Pages 13–68
DOI: https://doi.org/10.1090/S0077-1554-2014-00235-1
Bibliographic databases:
Document Type: Article
UDC: 514.74
MSC: 14M15, 14M17, 14M25
Language: Russian
Citation: M. M. Graev, “Einstein equations for invariant metrics on flag spaces and their Newton polytopes”, Tr. Mosk. Mat. Obs., 75, no. 1, MCCME, M., 2014, 25–91; Trans. Moscow Math. Soc., 75 (2014), 13–68
Citation in format AMSBIB
\Bibitem{Gra14}
\by M.~M.~Graev
\paper Einstein equations for invariant metrics on flag spaces and their Newton polytopes
\serial Tr. Mosk. Mat. Obs.
\yr 2014
\vol 75
\issue 1
\pages 25--91
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo556}
\elib{https://elibrary.ru/item.asp?id=23780153}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2014
\vol 75
\pages 13--68
\crossref{https://doi.org/10.1090/S0077-1554-2014-00235-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960154928}
Linking options:
  • https://www.mathnet.ru/eng/mmo556
  • https://www.mathnet.ru/eng/mmo/v75/i1/p25
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024