Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2013, Volume 74, Issue 2, Pages 353–373 (Mi mmo553)  

This article is cited in 9 scientific papers (total in 9 papers)

Unimodular triangulations of dilated 3-polytopes

F. Santosa, G. M. Zieglerb

a Facultad de Ciencias, Universidad de Cantabria, Spain
b Inst. Mathematics, FU Berlin, Germany
Full-text PDF (742 kB) Citations (9)
References:
Abstract: A seminal result in the theory of toric varieties, due to Knudsen, Mumford and Waterman (1973), asserts that for every lattice polytope $P$ there is a positive integer $k$ such that the dilated polytope $kP$ has a unimodular triangulation. In dimension 3, Kantor and Sarkaria (2003) have shown that $k=4$ works for every polytope. But this does not imply that every $k>4$ works as well. We here study the values of $k$ for which the result holds showing that:
  • It contains all composite numbers.
  • It is an additive semigroup.
These two properties imply that the only values of $k$ that may not work (besides 1 and 2, which are known not to work) are $k\in\{3,5,7,11\}$. With an ad-hoc construction we show that $k=7$ and $k=11$ also work, except in this case the triangulation cannot be guaranteed to be “standard” in the boundary. All in all, the only open cases are $k=3$ and $k=5$. References: 9 entries.
Key words and phrases: lattice polytopes, unimodular triangulations, KKMS theorem.
Received: 26.04.2013
Revised: 19.05.2013
English version:
Transactions of the Moscow Mathematical Society, 2013, Volume 74, Pages 293–311
DOI: https://doi.org/10.1090/s0077-1554-2014-00220-x
Bibliographic databases:
Document Type: Article
UDC: 514
MSC: 52B20, 14M25
Language: English
Citation: F. Santos, G. M. Ziegler, “Unimodular triangulations of dilated 3-polytopes”, Tr. Mosk. Mat. Obs., 74, no. 2, MCCME, M., 2013, 353–373; Trans. Moscow Math. Soc., 74 (2013), 293–311
Citation in format AMSBIB
\Bibitem{SanZie13}
\by F.~Santos, G.~M.~Ziegler
\paper Unimodular triangulations of dilated 3-polytopes
\serial Tr. Mosk. Mat. Obs.
\yr 2013
\vol 74
\issue 2
\pages 353--373
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo553}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3235802}
\zmath{https://zbmath.org/?q=an:1303.52007}
\elib{https://elibrary.ru/item.asp?id=21369376}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2013
\vol 74
\pages 293--311
\crossref{https://doi.org/10.1090/s0077-1554-2014-00220-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84934856541}
Linking options:
  • https://www.mathnet.ru/eng/mmo553
  • https://www.mathnet.ru/eng/mmo/v74/i2/p353
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024