Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2013, Volume 74, Issue 2, Pages 211–245 (Mi mmo546)  

This article is cited in 9 scientific papers (total in 9 papers)

Substitutions of polytopes and of simplicial complexes, and multigraded Betti numbers

A. A. Aizenberg

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (526 kB) Citations (9)
References:
Abstract: For a simplicial complex $K$ on $m$ vertices and simplicial complexes $K_1,\dots,K_m$, we introduce a new simplicial complex $K(K_1,\dots,K_m)$, called a substitution complex. This construction is a generalization of the iterated simplicial wedge studied by A. Bari et al. [Geom. Topol. 17, No. 3, 1497–1534 (2013; Zbl 1276.14087)]. In a number of cases it allows us to describe the combinatorics of generalized joins of polytopes $P(P_1,\dots,P_m)$, as introduced by G. Agnarsson [Ann. Comb. 17, No. 3, 401–426 (2013; Zbl 1272.05005)]. The substitution gives rise to an operad structure on the set of finite simplicial complexes in which a simplicial complex on $m$ vertices is considered as an $m$-ary operation. We prove the following main results: (1) the complex $K(K_1,\dots,K_m)$ is a simplicial sphere if and only if $K$ is a simplicial sphere and the $K_i$ are the boundaries of simplices, (2) the class of spherical nerve-complexes is closed under substitution, (3) multigraded betti numbers of $K(K_1,\dots,K_m)$ are expressed in terms of those of the original complexes $K,K_1,\dots,K_m$. We also describe connections between the obtained results and the known results of other authors.
Key words and phrases: generalized polyhedral join; simplicial wedge; simplicial complex operad; polyhedral product; polyhedral join; graded Betti numbers; enumerating polynomials; polarization of a homogeneous ideal.
Received: 14.05.2013
English version:
Transactions of the Moscow Mathematical Society, 2013, Volume 74, Pages 175–202
DOI: https://doi.org/10.1090/S0077-1554-2014-00224-7
Bibliographic databases:
Document Type: Article
UDC: 515.142.332
MSC: Primary 05E45; Secondary 52B11, 52B05, 55U10, 13F55
Language: Russian
Citation: A. A. Aizenberg, “Substitutions of polytopes and of simplicial complexes, and multigraded Betti numbers”, Tr. Mosk. Mat. Obs., 74, no. 2, MCCME, M., 2013, 211–245; Trans. Moscow Math. Soc., 74 (2013), 175–202
Citation in format AMSBIB
\Bibitem{Ayz13}
\by A.~A.~Aizenberg
\paper Substitutions of polytopes and of simplicial complexes, and multigraded Betti numbers
\serial Tr. Mosk. Mat. Obs.
\yr 2013
\vol 74
\issue 2
\pages 211--245
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo546}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3235795}
\zmath{https://zbmath.org/?q=an:06371561}
\elib{https://elibrary.ru/item.asp?id=21369369}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2013
\vol 74
\pages 175--202
\crossref{https://doi.org/10.1090/S0077-1554-2014-00224-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960129736}
Linking options:
  • https://www.mathnet.ru/eng/mmo546
  • https://www.mathnet.ru/eng/mmo/v74/i2/p211
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:396
    Full-text PDF :132
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024