Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2013, Volume 74, Issue 1, Pages 75–113 (Mi mmo541)  

This article is cited in 2 scientific papers (total in 2 papers)

Hill’s formula for $g$-periodic trajectories of Lagrangian systems

M. N. Davletshin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (465 kB) Citations (2)
References:
Abstract: In this paper some results of a work by Bolotin and Treshchëv are generalized to the case of $g$-periodic trajectories of Lagrangian systems. Formulae connecting the characteristic polynomial of the monodromy matrix with the determinant of the Hessian of the action functional are obtained both for the discrete and continuous cases. Applications to the problem of stability of $g$-periodic trajectories are given. Hill’s formula can be used to study $g$-periodic orbits obtained by variational methods.
Key words and phrases: Lagrangian systems; stability of $g$-periodic trajectories.
Received: 06.03.2013
Revised: 07.03.2013
English version:
Transactions of the Moscow Mathematical Society, 2013, Volume 74, Pages 65–96
DOI: https://doi.org/10.1090/S0077-1554-2014-00213-2
Bibliographic databases:
Document Type: Article
UDC: 517.933
MSC: 34D05, 37J25, 70H03
Language: Russian
Citation: M. N. Davletshin, “Hill’s formula for $g$-periodic trajectories of Lagrangian systems”, Tr. Mosk. Mat. Obs., 74, no. 1, MCCME, M., 2013, 75–113; Trans. Moscow Math. Soc., 74 (2013), 65–96
Citation in format AMSBIB
\Bibitem{Dav13}
\by M.~N.~Davletshin
\paper Hill’s formula for $g$-periodic trajectories of Lagrangian systems
\serial Tr. Mosk. Mat. Obs.
\yr 2013
\vol 74
\issue 1
\pages 75--113
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo541}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3235790}
\zmath{https://zbmath.org/?q=an:06371556}
\elib{https://elibrary.ru/item.asp?id=21369364}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2013
\vol 74
\pages 65--96
\crossref{https://doi.org/10.1090/S0077-1554-2014-00213-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924960172}
Linking options:
  • https://www.mathnet.ru/eng/mmo541
  • https://www.mathnet.ru/eng/mmo/v74/i1/p75
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:454
    Full-text PDF :118
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024