Abstract:
A justification of the adiabatic principle for the $(2+1)$-dimensional Abelian Higgs model is given. It is shown that near any geodesic on the space of static solutions there exists a solution of the dynamical Euler-Lagrange equations.
Key words and phrases:
Abelian Higgs model of field theory, Manton approximation, adiabatic limit, scattering of vortices.
Citation:
R. V. Palvelev, “Justification of the adiabatic principle in the Abelian Higgs model”, Tr. Mosk. Mat. Obs., 72, no. 2, MCCME, Moscow, 2011, 281–314; Trans. Moscow Math. Soc., 72 (2011), 219–244
\Bibitem{Pal11}
\by R.~V.~Palvelev
\paper Justification of the adiabatic principle in the Abelian Higgs model
\serial Tr. Mosk. Mat. Obs.
\yr 2011
\vol 72
\issue 2
\pages 281--314
\publ MCCME
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/mmo19}
\zmath{https://zbmath.org/?q=an:06026279}
\elib{https://elibrary.ru/item.asp?id=21369345}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2011
\vol 72
\pages 219--244
\crossref{https://doi.org/10.1090/S0077-1554-2012-00189-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904047441}
Linking options:
https://www.mathnet.ru/eng/mmo19
https://www.mathnet.ru/eng/mmo/v72/i2/p281
This publication is cited in the following 10 articles:
Armen Sergeev, “Ginzburg–Landau equations and their generalizations”, Indag. Math., New Ser., 34:2 (2023), 294–305
Armen Sergeev, “SCATTERING OF GINZBURG–LANDAU VORTICES”, J Math Sci, 266:3 (2022), 476
A. G. Sergeev, “Adiabatic limit in Ginzburg–Landau and Seiberg–Witten equations”, Theoret. and Math. Phys., 203:1 (2020), 561–568
A. Sergeev, “Seiberg-Witten theory as a complex version of Abelian Higgs model”, Sci. China-Math., 60:6, SI (2017), 1089–1100
A. Sergeev, “Adiabatic limit in Abelian Higgs model with application to Seiberg-Witten equations”, Phys. Part. Nuclei Lett., 14:2 (2017), 341–346
A. Sergeev, “Adiabatic limit in Ginzburg-Landau and Seiberg-Witten equations”, Geometric Methods in Physics, Trends in Mathematics, eds. P. Kielanowski, S. Ali, P. Bieliavsky, A. Odzijewicz, M. Schlichenmaier, T. Voronov, Springer Int Publishing Ag, 2016, 321–330
A. G. Sergeev, “Adiabatic limit in the Ginzburg–Landau and Seiberg–Witten equations”, Proc. Steklov Inst. Math., 289 (2015), 227–285
A. G. Sergeev, “On two geometric problems arising in mathematical physics”, J. Math. Sci., 223:6 (2017), 756–762
A. G. Sergeev, “Adiabatic limit for hyperbolic Ginzburg–Landau equations”, Journal of Mathematical Sciences, 202:6 (2014), 887–896
R. V. Palvelev, A. G. Sergeev, “Justification of the adiabatic principle for hyperbolic Ginzburg–Landau equations”, Proc. Steklov Inst. Math., 277 (2012), 191–205