Loading [MathJax]/jax/output/SVG/config.js
Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2011, Volume 72, Issue 2, Pages 281–314 (Mi mmo19)  

This article is cited in 10 scientific papers (total in 10 papers)

Justification of the adiabatic principle in the Abelian Higgs model

R. V. Palvelev

Steklov Mathematical Institute of the Russian Academy of Sciences
References:
Abstract: A justification of the adiabatic principle for the $(2+1)$-dimensional Abelian Higgs model is given. It is shown that near any geodesic on the space of static solutions there exists a solution of the dynamical Euler-Lagrange equations.
Key words and phrases: Abelian Higgs model of field theory, Manton approximation, adiabatic limit, scattering of vortices.
Received: 11.04.2011
English version:
Transactions of the Moscow Mathematical Society, 2011, Volume 72, Pages 219–244
DOI: https://doi.org/10.1090/S0077-1554-2012-00189-7
Bibliographic databases:
Document Type: Article
UDC: 517.956.35+517.958
MSC: 35Q60, 81T40, 53P99
Language: Russian
Citation: R. V. Palvelev, “Justification of the adiabatic principle in the Abelian Higgs model”, Tr. Mosk. Mat. Obs., 72, no. 2, MCCME, Moscow, 2011, 281–314; Trans. Moscow Math. Soc., 72 (2011), 219–244
Citation in format AMSBIB
\Bibitem{Pal11}
\by R.~V.~Palvelev
\paper Justification of the adiabatic principle in the Abelian Higgs model
\serial Tr. Mosk. Mat. Obs.
\yr 2011
\vol 72
\issue 2
\pages 281--314
\publ MCCME
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/mmo19}
\zmath{https://zbmath.org/?q=an:06026279}
\elib{https://elibrary.ru/item.asp?id=21369345}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2011
\vol 72
\pages 219--244
\crossref{https://doi.org/10.1090/S0077-1554-2012-00189-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904047441}
Linking options:
  • https://www.mathnet.ru/eng/mmo19
  • https://www.mathnet.ru/eng/mmo/v72/i2/p281
  • This publication is cited in the following 10 articles:
    1. Armen Sergeev, “Ginzburg–Landau equations and their generalizations”, Indag. Math., New Ser., 34:2 (2023), 294–305  mathnet  crossref  isi
    2. Armen Sergeev, “SCATTERING OF GINZBURG–LANDAU VORTICES”, J Math Sci, 266:3 (2022), 476  crossref
    3. A. G. Sergeev, “Adiabatic limit in Ginzburg–Landau and Seiberg–Witten equations”, Theoret. and Math. Phys., 203:1 (2020), 561–568  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. A. Sergeev, “Seiberg-Witten theory as a complex version of Abelian Higgs model”, Sci. China-Math., 60:6, SI (2017), 1089–1100  crossref  mathscinet  zmath  isi  scopus
    5. A. Sergeev, “Adiabatic limit in Abelian Higgs model with application to Seiberg-Witten equations”, Phys. Part. Nuclei Lett., 14:2 (2017), 341–346  crossref  isi  scopus
    6. A. Sergeev, “Adiabatic limit in Ginzburg-Landau and Seiberg-Witten equations”, Geometric Methods in Physics, Trends in Mathematics, eds. P. Kielanowski, S. Ali, P. Bieliavsky, A. Odzijewicz, M. Schlichenmaier, T. Voronov, Springer Int Publishing Ag, 2016, 321–330  crossref  mathscinet  zmath  isi
    7. A. G. Sergeev, “Adiabatic limit in the Ginzburg–Landau and Seiberg–Witten equations”, Proc. Steklov Inst. Math., 289 (2015), 227–285  mathnet  crossref  crossref  isi  elib
    8. A. G. Sergeev, “On two geometric problems arising in mathematical physics”, J. Math. Sci., 223:6 (2017), 756–762  mathnet  crossref  mathscinet  elib
    9. A. G. Sergeev, “Adiabatic limit for hyperbolic Ginzburg–Landau equations”, Journal of Mathematical Sciences, 202:6 (2014), 887–896  mathnet  crossref
    10. R. V. Palvelev, A. G. Sergeev, “Justification of the adiabatic principle for hyperbolic Ginzburg–Landau equations”, Proc. Steklov Inst. Math., 277 (2012), 191–205  mathnet  crossref  mathscinet  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:394
    Full-text PDF :127
    References:71
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025