Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 1967, Volume 16, Pages 151–180 (Mi mmo184)  

This article is cited in 7 scientific papers (total in 7 papers)

A strengthened Huygens principle for a certain class of differential operators with constant coefficients

B. R. Vaĭnberg, S. G. Gindikin
Received: 13.12.1965
Bibliographic databases:
Document Type: Article
MSC: Primary 35.10; Secondary 32.00
Language: Russian
Citation: B. R. Vaǐnberg, S. G. Gindikin, “A strengthened Huygens principle for a certain class of differential operators with constant coefficients”, Tr. Mosk. Mat. Obs., 16, MSU, M., 1967, 151–180
Citation in format AMSBIB
\Bibitem{VaiGin67}
\by B.~R.~Va{\v\i}nberg, S.~G.~Gindikin
\paper A strengthened Huygens principle for a~certain class of differential operators with constant coefficients
\serial Tr. Mosk. Mat. Obs.
\yr 1967
\vol 16
\pages 151--180
\publ MSU
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo184}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=227592}
\zmath{https://zbmath.org/?q=an:0166.36401}
Linking options:
  • https://www.mathnet.ru/eng/mmo184
  • https://www.mathnet.ru/eng/mmo/v16/p151
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:209
    Full-text PDF :77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024