Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 2, Pages 541–549
DOI: https://doi.org/10.17323/1609-4514-2003-3-2-541-549
(Mi mmj99)
 

This article is cited in 6 scientific papers (total in 6 papers)

Effectivisation of a string solution of the $2D$ Toda hierarchy and the Riemann theorem about complex domains

S. M. Natanzonabc

a M. V. Lomonosov Moscow State University
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
c Independent University of Moscow
Full-text PDF Citations (6)
References:
Abstract: Let $0\in D_+$ be a connected domain with analytic boundary on the complex plane $\mathbb C$. Then according to the Riemann theorem there exists a function $w(z)=\frac{1}{r}z+\sum_{j=0}^\infty p_jz^{-j}$, mapping biholomorphically $D_-=\mathbb C\setminus D_+$ to the exterior of the unit disk $\{w\in\mathbb C\colon|w|>1\}$. From Wiegmann's and Zabrodin's rezults it follows that this function is described by the formula $log w=\log z-\partial_{t_0}(\frac{1}{2}\partial_{t_0}+\sum_{k\geq1}\frac{z^{-k}}{k}\partial_{t_k})v$, where $v=v(t_0,t_1,\bar t_1, t_2, \bar t_2,\dots)$ is a function of an infinite number of harmonic moments $t_i$ of the domain $D_-$. This function is independent from the domain and satisfies the dispersionless Hirota equation for the $2D$ Toda lattice hierarchy. In the paper we find recursion relations for coefficients of the Taylor series of $v$.
Key words and phrases: Integrable systems, Toda lattice, Riemann theorem.
Received: January 15, 2002
Bibliographic databases:
MSC: 30C, 37K
Language: English
Citation: S. M. Natanzon, “Effectivisation of a string solution of the $2D$ Toda hierarchy and the Riemann theorem about complex domains”, Mosc. Math. J., 3:2 (2003), 541–549
Citation in format AMSBIB
\Bibitem{Nat03}
\by S.~M.~Natanzon
\paper Effectivisation of a~string solution of the~$2D$ Toda hierarchy and the Riemann theorem about complex domains
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 2
\pages 541--549
\mathnet{http://mi.mathnet.ru/mmj99}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-2-541-549}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025273}
\zmath{https://zbmath.org/?q=an:1060.37059}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594200012}
\elib{https://elibrary.ru/item.asp?id=8379114}
Linking options:
  • https://www.mathnet.ru/eng/mmj99
  • https://www.mathnet.ru/eng/mmj/v3/i2/p541
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024