Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 2, Pages 531–540
DOI: https://doi.org/10.17323/1609-4514-2003-3-2-531-540
(Mi mmj98)
 

This article is cited in 4 scientific papers (total in 4 papers)

Morse–Smale circle diffeomorphisms and moduli of elliptic curves

Yu. S. Ilyashenkoab, V. S. Moldavskiib

a Steklov Mathematical Institute, Russian Academy of Sciences
b Cornell University
Full-text PDF Citations (4)
References:
Abstract: To any circle diffeomorphism there corresponds, by a classical construction of V. I. Arnold, a one-parameter family of elliptic curves. Arnold conjectured that, as the parameter approaches zero, the modulus of the corresponding elliptic curve tends to the (Diophantine) rotation number of the original diffeomorphism. In this paper, we disprove the generalization of this conjecture to the case when the diffeomorphism in question is Morse–Smale. The proof relies on the theory of quasiconformal mappings.
Key words and phrases: Circle diffeomorphism, rotation number, moduli of elliptic curves, quasiconformal mappings.
Received: January 10, 2003
Bibliographic databases:
Document Type: Article
MSC: 37E10, 37F30
Language: English
Citation: Yu. S. Ilyashenko, V. S. Moldavskii, “Morse–Smale circle diffeomorphisms and moduli of elliptic curves”, Mosc. Math. J., 3:2 (2003), 531–540
Citation in format AMSBIB
\Bibitem{IlyMol03}
\by Yu.~S.~Ilyashenko, V.~S.~Moldavskii
\paper Morse--Smale circle diffeomorphisms and moduli of elliptic curves
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 2
\pages 531--540
\mathnet{http://mi.mathnet.ru/mmj98}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-2-531-540}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025272}
\zmath{https://zbmath.org/?q=an:1040.37026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594200011}
\elib{https://elibrary.ru/item.asp?id=8379113}
Linking options:
  • https://www.mathnet.ru/eng/mmj98
  • https://www.mathnet.ru/eng/mmj/v3/i2/p531
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:349
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024