Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 2, Pages 507–530
DOI: https://doi.org/10.17323/1609-4514-2003-3-2-507-530
(Mi mmj97)
 

This article is cited in 15 scientific papers (total in 15 papers)

Simple symmetric matrix singularities and the subgroups of Weyl groups $A_\mu$, $D_\mu$, $E_\mu$

V. V. Goryunova, V. M. Zakalyukinb

a Department of Mathematical Sciences, University of Liverpool
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF Citations (15)
References:
Abstract: We analyse the classification of simple symmetric matrix singularities depending on two parameters which was obtained recently by Bruce and Tari. We show that these singularities are classified by certain reflection subgroups Y of the Weyl groups $X=A_\mu$, $D_\mu$, $E_\mu$. The Dynkin diagram of such a subgroup is obtained from the affine diagram of $X$ by deleting vertices of total marking 2: deletion of two 1-vertices corresponds to a $2\times 2$ matrix singularity, and deletion of one 2-vertex gives rise to a $3\times 3$ matrix. The correspondence is based on an isomorphism of the discriminants and on the description of a relevant monodromy group of the determinantal curve. Moreover, the base of a miniversal deformation of a simple matrix singularity turns out to be isomorphic to the quotient of the complex configuration space of the group $X$ by the subgroup $Y$. We discuss lattice properties of symmetric matrix families in two variables which, in the case of simple singularities, define the choice of the subgroups.
Key words and phrases: Simple singularities of families of symmetric matrices, monodromy group, Weyl groups, sublattices in the vanishing homology, determinantial varieties.
Received: July 4, 2002
Bibliographic databases:
MSC: 58C27, 53A25, 65F15, 58K
Language: English
Citation: V. V. Goryunov, V. M. Zakalyukin, “Simple symmetric matrix singularities and the subgroups of Weyl groups $A_\mu$, $D_\mu$, $E_\mu$”, Mosc. Math. J., 3:2 (2003), 507–530
Citation in format AMSBIB
\Bibitem{GorZak03}
\by V.~V.~Goryunov, V.~M.~Zakalyukin
\paper Simple symmetric matrix singularities and the subgroups of Weyl groups $A_\mu$, $D_\mu$, $E_\mu$
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 2
\pages 507--530
\mathnet{http://mi.mathnet.ru/mmj97}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-2-507-530}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025271}
\zmath{https://zbmath.org/?q=an:1040.58018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594200010}
Linking options:
  • https://www.mathnet.ru/eng/mmj97
  • https://www.mathnet.ru/eng/mmj/v3/i2/p507
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :1
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024