Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 2, Pages 475–505
DOI: https://doi.org/10.17323/1609-4514-2003-3-2-475-505
(Mi mmj96)
 

This article is cited in 56 scientific papers (total in 56 papers)

$A_{n-1}$ singularities and $n$KdV hierarchies

A. B. Givental'

University of California, Berkeley
Full-text PDF Citations (56)
References:
Abstract: According to a conjecture of E. Witten [21] proved by M. Kontsevich [12], a certain generating function for intersection indices on the Deligne–Mumford moduli spaces of Riemann surfaces coincides with a certain tau-function of the KdV hierarchy. The generating function is naturally generalized under the name the total descendent potential in the theory of Gromov–Witten invariants of symplectic manifolds. The papers [6], [4] contain two equivalent constructions, motivated by some results in Gromov–Witten theory, which associate a total descendent potential to any semisimple Frobenius structure. In this paper, we prove that in the case of K. Saito's Frobenius structure [17] on the miniversal deformation of the $A_{n-1}$-singularity, the total descendent potential is a tau-function of the $n$KdV hierarchy. We derive this result from a more general construction for solutions of the $n$KdV hierarchy from $n-1$ solutions of the KdV hierarchy.
Key words and phrases: Singularities, vanishing cycles, oscillating integrals, vertex operators, Hirota quadratic equations, Frobenius structures, the phase form.
Received: September 25, 2002
Bibliographic databases:
Language: English
Citation: A. B. Givental', “$A_{n-1}$ singularities and $n$KdV hierarchies”, Mosc. Math. J., 3:2 (2003), 475–505
Citation in format AMSBIB
\Bibitem{Giv03}
\by A.~B.~Givental'
\paper $A_{n-1}$ singularities and $n$KdV hierarchies
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 2
\pages 475--505
\mathnet{http://mi.mathnet.ru/mmj96}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-2-475-505}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025270}
\zmath{https://zbmath.org/?q=an:1054.14067}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594200009}
\elib{https://elibrary.ru/item.asp?id=8379111}
Linking options:
  • https://www.mathnet.ru/eng/mmj96
  • https://www.mathnet.ru/eng/mmj/v3/i2/p475
  • This publication is cited in the following 56 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:326
    References:83
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024