Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 2, Pages 457–473
DOI: https://doi.org/10.17323/1609-4514-2003-3-2-457-473
(Mi mmj95)
 

This article is cited in 2 scientific papers (total in 2 papers)

Modular transformations of the elliptic hypergeometric functions, Macdonald polynomials, and the shift operator

G. Feldera, L. J. Stevensb, A. N. Varchenkob

a Departement für Mathematik, Eidgenösische Technische Hochschule Zürich
b Department of Mathematics, University of North Carolina at Chapel Hill
Full-text PDF Citations (2)
References:
Abstract: We consider the space of elliptic hypergeometric functions of the $\mathfrak{sl}_2$ type associated with elliptic curves with one marked point. This space represents conformal blocks in the $\mathfrak{sl}_2$ WZW model of CFT. The modular group acts on this space. We give formulas for the matrices of the action in terms of values at roots of unity of Macdonald polynomials of the $\mathfrak{sl}_2$ type.
Key words and phrases: Elliptic hypergeometric functions, conformal blocks, Macdonald polynomials.
Received: October 2, 2002
Bibliographic databases:
MSC: Primary 39Axx; Secondary 11Fxx, 20Gxx, 32G34, 33Dxx.
Language: English
Citation: G. Felder, L. J. Stevens, A. N. Varchenko, “Modular transformations of the elliptic hypergeometric functions, Macdonald polynomials, and the shift operator”, Mosc. Math. J., 3:2 (2003), 457–473
Citation in format AMSBIB
\Bibitem{FelSteVar03}
\by G.~Felder, L.~J.~Stevens, A.~N.~Varchenko
\paper Modular transformations of the elliptic hypergeometric functions, Macdonald polynomials, and the shift operator
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 2
\pages 457--473
\mathnet{http://mi.mathnet.ru/mmj95}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-2-457-473}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025269}
\zmath{https://zbmath.org/?q=an:1074.33014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594200008}
Linking options:
  • https://www.mathnet.ru/eng/mmj95
  • https://www.mathnet.ru/eng/mmj/v3/i2/p457
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:278
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024