Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 2, Pages 439–455
DOI: https://doi.org/10.17323/1609-4514-2003-3-2-439-455
(Mi mmj94)
 

This article is cited in 30 scientific papers (total in 30 papers)

Indices of 1-forms on an isolated complete intersection singularity

W. Ebelinga, S. M. Gusein-Zadeb

a Leibniz University of Hannover
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF Citations (30)
References:
Abstract: There are some generalizations of the classical Eisenbud–Levine–Khimshiashvili formula for the index of a singular point of an analytic vector field on $\mathbb R^n$ to vector fields on singular varieties. We offer an alternative approach based on the study of indices of 1-forms instead of vector fields. When the variety under consideration is a real isolated complete intersection singularity (icis), we define an index of a (real) 1-form on it. In the complex setting we define an index of a holomorphic 1-form on a complex icis and express it as the dimension of a certain algebra. In the real setting, for an icis $V=f^{-1}(0)$, $f: (\mathbb C^n,0)\to(\mathbb C^k,0)$, $f$ is real, we define a complex analytic family of quadratic forms parameterized by the points $\varepsilon$ of the image $(\mathbb C^k,0)$ of the map $f$ which become real for real $\varepsilon$ and in this case their signatures defer from the “real” index by ${}_\mathcal X (V_\varepsilon)-1$, where ${}_\mathcal X(V_\varepsilon)$ is the Euler characteristic of the corresponding smoothing $V_\varepsilon= f^{-1}(\varepsilon)\cap B_\delta$ of the icis $V$.
Key words and phrases: Singular varieties, 1-forms, singular points, indices.
Received: September 20, 2001
Bibliographic databases:
MSC: 14B05, 32S99
Language: English
Citation: W. Ebeling, S. M. Gusein-Zade, “Indices of 1-forms on an isolated complete intersection singularity”, Mosc. Math. J., 3:2 (2003), 439–455
Citation in format AMSBIB
\Bibitem{EbeGus03}
\by W.~Ebeling, S.~M.~Gusein-Zade
\paper Indices of 1-forms on an isolated complete intersection singularity
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 2
\pages 439--455
\mathnet{http://mi.mathnet.ru/mmj94}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-2-439-455}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025268}
\zmath{https://zbmath.org/?q=an:1039.32033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594200007}
\elib{https://elibrary.ru/item.asp?id=8379109}
Linking options:
  • https://www.mathnet.ru/eng/mmj94
  • https://www.mathnet.ru/eng/mmj/v3/i2/p439
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:434
    References:97
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024