Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 2, Pages 361–395
DOI: https://doi.org/10.17323/1609-4514-2003-3-2-361-395
(Mi mmj91)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the legacy of free divisors. II. Free* divisors and complete intersections

J. Damon

Department of Mathematics, University of North Carolina at Chapel Hill
Full-text PDF Citations (7)
References:
Abstract: We provide a criterion that for an equivalence group $\mathcal G$ on holomorphic germs, the discriminant of a $\mathcal G$-versal unfolding is a free divisor. The criterion is in terms of the discriminant being Cohen–Macaulay and generically having Morse-type singularities. When either of these conditions fails, we provide a criterion that the discriminant have a weaker free* divisor structure. For nonlinear sections of a free* divisor $V$, we obtain a formula for the number of singular vanishing cycles by modifying an earlier formula obtained with David Mond and taking into account virtual singularities.
Key words and phrases: Discriminants, versal unfoldings, free divisors, free* divisors, liftable vector fields, Morse-type singularities, Cohen–Macaulay condition.
Received: May 15, 2002
Bibliographic databases:
MSC: Primary 14B07, 14M12, 32S30; Secondary 16G50, 14J17
Language: English
Citation: J. Damon, “On the legacy of free divisors. II. Free* divisors and complete intersections”, Mosc. Math. J., 3:2 (2003), 361–395
Citation in format AMSBIB
\Bibitem{Dam03}
\by J.~Damon
\paper On the legacy of free divisors. II.~Free* divisors and complete intersections
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 2
\pages 361--395
\mathnet{http://mi.mathnet.ru/mmj91}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-2-361-395}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025265}
\zmath{https://zbmath.org/?q=an:1040.32026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594200004}
\elib{https://elibrary.ru/item.asp?id=8379106}
Linking options:
  • https://www.mathnet.ru/eng/mmj91
  • https://www.mathnet.ru/eng/mmj/v3/i2/p361
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:227
    References:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024