Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 2, Pages 273–333
DOI: https://doi.org/10.17323/1609-4514-2003-3-2-273-333
(Mi mmj89)
 

This article is cited in 8 scientific papers (total in 8 papers)

The combinatorial geometry of singularities and Arnold's series $E$$Z$$Q$

E. Brieskorn, A. M. Pratusevich, F. Rothenhäusler

University of Bonn, Institute for Applied Mathematics
Full-text PDF Citations (8)
References:
Abstract: We consider discrete subgroups $\Gamma$ of the simply connected Lie group $\widetilde{\rm SU}(1,1)$ of finite level. This Lie group has the structure of a 3-dimensional Lorentz manifold coming from the Killing form. $\Gamma$ acts on $\widetilde{\rm SU}(1,1)$ by left translations. We want to describe the Lorentz space form $\Gamma\setminus\widetilde{\rm SU}(1,1)$ by constructing a fundamental domain $F$ for $\Gamma$. We want $F$ to be a polyhedron with totally geodesic faces. We construct such $F$ for all $\Gamma$ satisfying the following condition: The image $\overline\Gamma$ of $\Gamma$ in ${\rm PSU}(1,1)$ has a fixed point $u$ in the unit disk of order larger than the level of $\Gamma$. The construction depends on $\Gamma$ and $\Gamma u$.
For co-compact ${\rm\Gamma}$ the Lorentz space form $\Gamma\setminus\widetilde{\rm SU}(1,1)$ is the link of a quasi-homogeneous Gorenstein singularity. The quasi-homogeneous singularities of Arnold's series $E$$Z$$Q$ are of this type. We compute the fundamental domains for the corresponding group. They are represented by polyhedra in Lorentz 3-space shown on Tables 1–13. Each series exhibits a regular characteristic pattern of its combinatorial geometry related to classical uniform polyhedra.
Key words and phrases: Lorentz space form, polyhedral fundamental domain, quasihomogeneous singularity, Arnold singularity series.
Bibliographic databases:
MSC: Primary 53C50; Secondary 14J17, 20H10, 30F35, 30F60,32G15, 32S25, 51M20, 52
Language: English
Citation: E. Brieskorn, A. M. Pratusevich, F. Rothenhäusler, “The combinatorial geometry of singularities and Arnold's series $E$$Z$$Q$”, Mosc. Math. J., 3:2 (2003), 273–333
Citation in format AMSBIB
\Bibitem{BriPraRot03}
\by E.~Brieskorn, A.~M.~Pratusevich, F.~Rothenh\"ausler
\paper The combinatorial geometry of singularities and Arnold's series~$E$,~$Z$,~$Q$
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 2
\pages 273--333
\mathnet{http://mi.mathnet.ru/mmj89}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-2-273-333}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025263}
\zmath{https://zbmath.org/?q=an:1046.32004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594200002}
\elib{https://elibrary.ru/item.asp?id=8379104}
Linking options:
  • https://www.mathnet.ru/eng/mmj89
  • https://www.mathnet.ru/eng/mmj/v3/i2/p273
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:372
    Full-text PDF :1
    References:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024