Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2023, Volume 23, Number 3, Pages 401–432 (Mi mmj860)  

Complements of discriminants of real parabolic function singularities

V. A. Vassiliev

Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel
References:
Abstract: A conjecturally complete list of components of complements of discriminant varieties of parabolic singularities of smooth real functions is given. We also promote a combinatorial program that enumerates topological types of non-discriminant morsifications of isolated real function singularities and provides a strong invariant of the components of complements of discriminant varieties.
Key words and phrases: discriminant, singularity, surgery, morsification.
Document Type: Article
MSC: Primary 14Q30; Secondary 14B07, 14P25
Language: English
Citation: V. A. Vassiliev, “Complements of discriminants of real parabolic function singularities”, Mosc. Math. J., 23:3 (2023), 401–432
Citation in format AMSBIB
\Bibitem{Vas23}
\by V.~A.~Vassiliev
\paper Complements of discriminants of real parabolic function singularities
\jour Mosc. Math.~J.
\yr 2023
\vol 23
\issue 3
\pages 401--432
\mathnet{http://mi.mathnet.ru/mmj860}
Linking options:
  • https://www.mathnet.ru/eng/mmj860
  • https://www.mathnet.ru/eng/mmj/v23/i3/p401
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:45
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025