Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2023, Volume 23, Number 3, Pages 369–400 (Mi mmj859)  

Parameterizing and inverting analytic mappings with unit Jacobian

Timur Sadykov

Plekhanov Russian University of Economics, 115054, Moscow, Russia
References:
Abstract: Let $x=(x_1,\dots,x_n)\in\mathbb{C}^n$ be a vector of complex variables, denote by $A=(a_{jk})$ a square matrix of size $n\geq 2$, and let $\varphi\in\mathcal{O}(\Omega)$ be an analytic function defined in a nonempty domain $\Omega\subset\mathbb{C}$. We investigate the family of mappings
$$ f=(f_1,\dots,f_n)\colon \mathbb{C}^n\rightarrow\mathbb{C}^n, \quad f[A,\varphi](x):=x+\varphi(Ax) $$
with the coordinates
$$ f_j \colon x \mapsto x_j + \varphi\biggl(\sum\limits_{k=1}^n a_{jk}x_k\biggr),\quad j=1,\dots,n, $$
whose Jacobian is identically equal to a nonzero constant for any $x$ such that all of $f_j$ are well defined.
Let $U$ be a square matrix such that the Jacobian of the mapping $f[U,\varphi](x)$ is a nonzero constant for any $x$ and moreover for any analytic function $\varphi\in\mathcal{O}(\Omega)$. We show that any such matrix $U$ is uniquely defined, up to a suitable permutation similarity of matrices, by a partition of the dimension $n$ into a sum of $m$ positive integers together with a permutation on $m$ elements.
For any $d=2,3,\dots$ we construct $n$-parametric family of square matrices $H(s), s\in\mathbb{C}^n$, such that for any matrix $U$ as above the mapping $x+\left((U\odot H(s))x\right)^d$ defined by the Hadamard product $U\odot H(s)$ has unit Jacobian. We prove any such mapping to be polynomially invertible and provide an explicit recursive formula for its inverse.
Key words and phrases: Jacobian conjecture, polynomial invertibility, Hadamard product, permutation similarity.
Document Type: Article
MSC: 14R15, 32H50
Language: English
Citation: Timur Sadykov, “Parameterizing and inverting analytic mappings with unit Jacobian”, Mosc. Math. J., 23:3 (2023), 369–400
Citation in format AMSBIB
\Bibitem{Sad23}
\by Timur~Sadykov
\paper Parameterizing and inverting analytic mappings with~unit Jacobian
\jour Mosc. Math.~J.
\yr 2023
\vol 23
\issue 3
\pages 369--400
\mathnet{http://mi.mathnet.ru/mmj859}
Linking options:
  • https://www.mathnet.ru/eng/mmj859
  • https://www.mathnet.ru/eng/mmj/v23/i3/p369
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025