Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2023, Volume 23, Number 3, Pages 309–317 (Mi mmj856)  

A formula for the Gromov–Witten potential of an elliptic curve

Alexandr Buryakabc

a Faculty of Mathematics, National Research University Higher School of Economics, 6 Usacheva str., Moscow, 119048, Russian Federation
b Center for Advanced Studies, Skolkovo Institute of Science and Technology, 1 Nobel str., Moscow, 143026, Russian Federation
c P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl, 150003, Russian Federation
References:
Abstract: An algorithm to determine all the Gromov–Witten invariants of any smooth projective curve was obtained by Okounkov and Pandharipande in 2006. They identified stationary invariants with certain Hurwitz numbers and then presented Virasoro type constraints that allow to determine all the other Gromov–Witten invariants in terms of the stationary ones. In the case of an elliptic curve, we show that these Virasoro type constraints can be explicitly solved leading to a very explicit formula for the full Gromov–Witten potential in terms of the stationary invariants.
Key words and phrases: elliptic curve, Gromov–Witten invariant, generating series.
Document Type: Article
MSC: 14H10, 14H70
Language: English
Citation: Alexandr Buryak, “A formula for the Gromov–Witten potential of an elliptic curve”, Mosc. Math. J., 23:3 (2023), 309–317
Citation in format AMSBIB
\Bibitem{Bur23}
\by Alexandr~Buryak
\paper A formula for the Gromov--Witten potential of an elliptic curve
\jour Mosc. Math.~J.
\yr 2023
\vol 23
\issue 3
\pages 309--317
\mathnet{http://mi.mathnet.ru/mmj856}
Linking options:
  • https://www.mathnet.ru/eng/mmj856
  • https://www.mathnet.ru/eng/mmj/v23/i3/p309
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:32
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024