Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2023, Volume 23, Number 2, Pages 133–167 (Mi mmj850)  

Electrical networks, Lagrangian Grassmannians, and symplectic groups

B. Bychkovabc, V. Gorbounovb, A. Kazakovdec, D. Talalaevdc

a Department of Mathematics, University of Haifa, Mount Carmel, 3488838, Haifa, Israel
b Faculty of Mathematics, National Research University Higher School of Economics, Usacheva 6, 119048 Moscow, Russia
c Centre of Integrable Systems, P. G. Demidov Yaroslavl State University, Sovetskaya 14, 150003, Yaroslavl, Russia
d Lomonosov Moscow State University, Moscow, Russia
e Center of Fundamental Mathematics, Moscow Institute of Physics and Technology (National Research University), Russia
References:
Abstract: We refine the result of T. Lam on embedding the space $E_n$ of electrical networks on a planar graph with $n$ boundary points into the totally non-negative Grassmannian $\mathrm{Gr}_{\geq 0}(n-1,2n)$ by proving first that the image lands in $\mathrm{Gr}(n-1,V)\subset \mathrm{Gr}(n-1,2n)$, where $V\subset \mathbb{R}^{2n}$ is a certain subspace of dimension $2n-2$. The role of this reduction of the dimension of the ambient space is crucial for us. We show next that the image lands in fact inside the Lagrangian Grassmannian $\mathrm{LG}(n-1,V)\subset \mathrm{Gr}(n-1,V)$. As it is well known $\mathrm{LG}(n-1)$ can be identified with $\mathrm{Gr}(n-1,2n-2)\cap \mathbb{P} L$, where $L\subset \bigwedge^{n-1}\mathbb R^{2n-2}$ is a subspace of dimension equal to the Catalan number $C_n$, moreover it is the space of the fundamental representation of the symplectic group $\mathrm{Sp}(2n-2)$ which corresponds to the last vertex of the Dynkin diagram. We show further that the linear relations cutting the image of $E_n$ out of $\mathrm{Gr}(n-1,2n)$, found in Lam's article, define that space $L$. This connects the combinatorial description of $E_n$ discovered by Lam and representation theory of the symplectic group.
Key words and phrases: electrical networks, electrical algebra, Lagrangian Grassmanian.
Document Type: Article
MSC: 14M15, 82B20, 05E10
Language: English
Citation: B. Bychkov, V. Gorbounov, A. Kazakov, D. Talalaev, “Electrical networks, Lagrangian Grassmannians, and symplectic groups”, Mosc. Math. J., 23:2 (2023), 133–167
Citation in format AMSBIB
\Bibitem{BycGorKaz23}
\by B.~Bychkov, V.~Gorbounov, A.~Kazakov, D.~Talalaev
\paper Electrical networks, Lagrangian Grassmannians, and symplectic groups
\jour Mosc. Math.~J.
\yr 2023
\vol 23
\issue 2
\pages 133--167
\mathnet{http://mi.mathnet.ru/mmj850}
Linking options:
  • https://www.mathnet.ru/eng/mmj850
  • https://www.mathnet.ru/eng/mmj/v23/i2/p133
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024