|
Smooth quotients of principally polarized abelian varieties
Robert Auffarth, Giancarlo Lucchini Arteche Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
Abstract:
We give an explicit characterization of all principally polarized abelian varieties $(A,\Theta)$ such that there is a finite subgroup $G\subseteq\mathrm{Aut}(A,\Theta)$ such that the quotient variety $A/G$ is smooth. We also give a complete classification of smooth quotients of Jacobians of curves.
Key words and phrases:
abelian varieties, principal polarizations, Jacobians of curves, smooth quotients, automorphisms.
Citation:
Robert Auffarth, Giancarlo Lucchini Arteche, “Smooth quotients of principally polarized abelian varieties”, Mosc. Math. J., 22:2 (2022), 225–237
Linking options:
https://www.mathnet.ru/eng/mmj826 https://www.mathnet.ru/eng/mmj/v22/i2/p225
|
Statistics & downloads: |
Abstract page: | 31 | References: | 19 |
|