Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2022, Volume 22, Number 2, Pages 177–224 (Mi mmj825)  

Continuum Kac–Moody algebras

Andrea Appela, Francesco Salabc, Olivier Schiffmannd

a Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Italy
b Università di Pisa, Dipartimento di Matematica, Italy;
c Kavli IPMU (WPI), UTIAS, The University of Tokyo, Japan
d Laboratoire de Mathématiques, Université de Paris-Sud Paris-Saclay, France
References:
Abstract: We introduce a new class of infinite-dimensional Lie algebras, which we refer to as continuum Kac–Moody algebras. Their construction is closely related to that of usual Kac–Moody algebras, but they feature a continuum root system with no simple roots. Their Cartan datum encodes the topology of a one-dimensional real space and can be thought of as a generalization of a quiver, where vertices are replaced by connected intervals. For these Lie algebras, we prove an analogue of the Gabber–Kac–Serre theorem, providing a complete set of defining relations featuring only quadratic Serre relations. Moreover, we provide an alternative realization as continuum colimits of symmetric Borcherds–Kac–Moody algebras with at most isotropic simple roots. The approach we follow deeply relies on the more general notion of a semigroup Lie algebra and its structural properties.
Key words and phrases: continuum quivers, Lie algebras, Borcherds–Kac–Moody algebras.
Document Type: Article
MSC: Primary 17B65; Secondary 17B67
Language: English
Citation: Andrea Appel, Francesco Sala, Olivier Schiffmann, “Continuum Kac–Moody algebras”, Mosc. Math. J., 22:2 (2022), 177–224
Citation in format AMSBIB
\Bibitem{AppSalSch22}
\by Andrea~Appel, Francesco~Sala, Olivier~Schiffmann
\paper Continuum Kac--Moody algebras
\jour Mosc. Math.~J.
\yr 2022
\vol 22
\issue 2
\pages 177--224
\mathnet{http://mi.mathnet.ru/mmj825}
Linking options:
  • https://www.mathnet.ru/eng/mmj825
  • https://www.mathnet.ru/eng/mmj/v22/i2/p177
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:29
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024