Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2022, Volume 22, Number 1, Pages 121–132
DOI: https://doi.org/10.17323/1609-4514-2022-22-1-121-132
(Mi mmj819)
 

On universal norm elements and a problem of Coleman

Soogil Seo

Department of Mathematics, Yonsei University, 134 Sinchon-Dong, Seodaemun-Gu, Seoul 120-749, South Korea
References:
Abstract: Suppose that $\bigcup_{n \ge 0} k_n$ is the cyclotomic $\mathbb{Z}_p$-extension of a number field $k$. In 1985, R. Coleman asked whether the quotient of the group $ ( \bigcap_{n\ge 0} N_{k_n/k} k_n^\times) \cap U_k$ (the group of units of $k$ lying in $N_{k_n/k} k_n^\times$ for all $n$, where $N_{k_n/k}$ is the norm mapping and $k_n$ is an intermediate field) over the group of universal norm units $\bigcap_{n\ge 0} N_{k_n/k}U_n$, where $U_n$ is the unit group of $k_n$, is finite. We discuss Coleman's problem for both the global units and the $p$-units, using an interpretation of the Kuz'min–Gross conjecture. Coleman claims that the quotient is finite modulo Leopoldt's conjecture and Kuz'min–Gross' conjecture under a mild condition. In this paper we improve Coleman's claim by proving the claim modulo only Kuz'min–Gross' conjecture without Leopoldt's conjecture under the same mild condition.
Key words and phrases: tate module, Universal norm elements, cyclotomic $\mathbb{Z}_p$-extension, the Kuz'min–Gross conjecture.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Soogil Seo, “On universal norm elements and a problem of Coleman”, Mosc. Math. J., 22:1 (2022), 121–132
Citation in format AMSBIB
\Bibitem{Seo22}
\by Soogil~Seo
\paper On universal norm elements and a problem of Coleman
\jour Mosc. Math.~J.
\yr 2022
\vol 22
\issue 1
\pages 121--132
\mathnet{http://mi.mathnet.ru/mmj819}
\crossref{https://doi.org/10.17323/1609-4514-2022-22-1-121-132}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4407772}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129167659}
Linking options:
  • https://www.mathnet.ru/eng/mmj819
  • https://www.mathnet.ru/eng/mmj/v22/i1/p121
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:156
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024