Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2022, Volume 22, Number 1, Pages 69–81
DOI: https://doi.org/10.17323/1609-4514-2022-22-1-69-81
(Mi mmj816)
 

This article is cited in 1 scientific paper (total in 1 paper)

Transition polynomial as a weight system for binary delta-matroids

Alexander Dunaykin, Vyacheslav Zhukov

International Laboratory of Cluster Geometry National Research University Higher School of Economics
Full-text PDF Citations (1)
References:
Abstract: To a singular knot $K$ with $n$ double points, one can associate a chord diagram with $n$ chords. A chord diagram can also be understood as a $4$-regular graph endowed with an oriented Euler circuit. L. Traldi introduced a polynomial invariant for such graphs, called a transition polynomial. We specialize this polynomial to a multiplicative weight system, that is, a function on chord diagrams satisfying $4$-term relations and determining thus a finite type knot invariant. We prove a similar statement for the transition polynomial of general ribbon graphs and binary delta-matroids defined by R. Brijder and H. J. Hoogeboom, which defines, as a consequence, a finite type invariant of links.
Key words and phrases: knot, link, finite type invariant of knots, chord diagram, transition polynomial, delta-matroid.
Bibliographic databases:
Document Type: Article
MSC: 05C31
Language: English
Citation: Alexander Dunaykin, Vyacheslav Zhukov, “Transition polynomial as a weight system for binary delta-matroids”, Mosc. Math. J., 22:1 (2022), 69–81
Citation in format AMSBIB
\Bibitem{DunZhu22}
\by Alexander~Dunaykin, Vyacheslav~Zhukov
\paper Transition polynomial as a weight system for binary delta-matroids
\jour Mosc. Math.~J.
\yr 2022
\vol 22
\issue 1
\pages 69--81
\mathnet{http://mi.mathnet.ru/mmj816}
\crossref{https://doi.org/10.17323/1609-4514-2022-22-1-69-81}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4407769}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129156323}
Linking options:
  • https://www.mathnet.ru/eng/mmj816
  • https://www.mathnet.ru/eng/mmj/v22/i1/p69
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:122
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024