Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2022, Volume 22, Number 1, Pages 1–68
DOI: https://doi.org/10.17323/1609-4514-2022-22-1-1-68
(Mi mmj815)
 

This article is cited in 2 scientific papers (total in 2 papers)

The $*$-Markov equation for Laurent polynomials

Giordano Cottia, Alexander Varchenkobc

a Faculdade de Ciências da Universidade de Lisboa - Grupo de Física Matemática, Campo Grande Edifício C6, 1749-016 Lisboa, Portugal
b Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA
c Faculty of Mathematics and Mechanics, Lomonosov Moscow State University, Leninskiye Gory 1, 119991 Moscow GSP-1, Russia
Full-text PDF Citations (2)
References:
Abstract: We consider the $*$-Markov equation for the symmetric Laurent polynomials in three variables with integer coefficients, which appears as an equivariant analog of the classical Markov equation for integers. We study how the properties of the Markov equation and its solutions are reflected in the properties of the $*$-Markov equation and its solutions.
Key words and phrases: markov equation, symmetric Laurent polynomial, trees, Poisson structure.
Bibliographic databases:
Document Type: Article
MSC: 11D25, 14F08, 34M40
Language: English
Citation: Giordano Cotti, Alexander Varchenko, “The $*$-Markov equation for Laurent polynomials”, Mosc. Math. J., 22:1 (2022), 1–68
Citation in format AMSBIB
\Bibitem{CotVar22}
\by Giordano~Cotti, Alexander~Varchenko
\paper The $*$-Markov equation for Laurent polynomials
\jour Mosc. Math.~J.
\yr 2022
\vol 22
\issue 1
\pages 1--68
\mathnet{http://mi.mathnet.ru/mmj815}
\crossref{https://doi.org/10.17323/1609-4514-2022-22-1-1-68}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4407768}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129209892}
Linking options:
  • https://www.mathnet.ru/eng/mmj815
  • https://www.mathnet.ru/eng/mmj/v22/i1/p1
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024