Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2021, Volume 21, Number 4, Pages 807–830
DOI: https://doi.org/10.17323/1609-4514-2021-21-4-807-830
(Mi mmj814)
 

This article is cited in 1 scientific paper (total in 1 paper)

Hodge numbers of generalized Kummer schemes via relative power structures

Andrew Morrisona, Junliang Shenb

a Departement Mathematik, ETH Zürich
b Department of Mathematics, Yale University
Full-text PDF Citations (1)
References:
Abstract: We develop a power structure over the Grothendieck ring of varieties relative to an abelian monoid, which provides a systematic method to compute the class of the generalized Kummer scheme in the Grothendieck ring of Hodge structures. We obtain a generalized version of Cheah's formula for the Hilbert scheme of points, which specializes to Gulbrandsen's conjecture for Euler characteristics. Moreover, in the surface case we prove a conjecture of Göttsche for geometrically ruled surfaces.
Key words and phrases: power structure, Hodge polynomial, Donaldson–Thomas invariant, generalized Kummer scheme.
Bibliographic databases:
Document Type: Article
MSC: Primary 14C05; Secondary 14K05
Language: English
Citation: Andrew Morrison, Junliang Shen, “Hodge numbers of generalized Kummer schemes via relative power structures”, Mosc. Math. J., 21:4 (2021), 807–830
Citation in format AMSBIB
\Bibitem{MorShe21}
\by Andrew~Morrison, Junliang~Shen
\paper Hodge numbers of generalized Kummer schemes via relative power structures
\jour Mosc. Math.~J.
\yr 2021
\vol 21
\issue 4
\pages 807--830
\mathnet{http://mi.mathnet.ru/mmj814}
\crossref{https://doi.org/10.17323/1609-4514-2021-21-4-807-830}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85117168015}
Linking options:
  • https://www.mathnet.ru/eng/mmj814
  • https://www.mathnet.ru/eng/mmj/v21/i4/p807
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:62
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024