Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2021, Volume 21, Number 3, Pages 639–652
DOI: https://doi.org/10.17323/1609-4514-2021-21-3-639-652
(Mi mmj808)
 

This article is cited in 3 scientific papers (total in 3 papers)

Toric topology of the Grassmannian of planes in $\mathbb{C}^5$ and the del Pezzo surface of degree $5$

Hendrik Süß

School of Mathematics, The University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL
Full-text PDF Citations (3)
References:
Abstract: We determine the integral homology of the orbit space of a maximal compact torus action on the Grassmannian $\operatorname{Gr}(2,\mathbb C^5)$. This problem has been also studied by Buchstaber and Terzić via purely topological methods. Here, we propose an alternative approach via the well-known Geometric Invariant Theory of the algebraic torus action on this Grassmannian.
Key words and phrases: grassmannian, torus action, orbit space, Geometric Invariant Theory, del Pezzo surface.
Bibliographic databases:
Document Type: Article
MSC: Primary 57S25; Secondary 14L24, 53D20, 14J26
Language: English
Citation: Hendrik Süß, “Toric topology of the Grassmannian of planes in $\mathbb{C}^5$ and the del Pezzo surface of degree $5$”, Mosc. Math. J., 21:3 (2021), 639–652
Citation in format AMSBIB
\Bibitem{Sus21}
\by Hendrik~S\"u{\ss}
\paper Toric topology of the Grassmannian of planes in $\mathbb{C}^5$ and the del Pezzo surface of degree~$5$
\jour Mosc. Math.~J.
\yr 2021
\vol 21
\issue 3
\pages 639--652
\mathnet{http://mi.mathnet.ru/mmj808}
\crossref{https://doi.org/10.17323/1609-4514-2021-21-3-639-652}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109973421}
Linking options:
  • https://www.mathnet.ru/eng/mmj808
  • https://www.mathnet.ru/eng/mmj/v21/i3/p639
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024