Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2021, Volume 21, Number 3, Pages 593–612
DOI: https://doi.org/10.17323/1609-4514-2021-21-3-593-612
(Mi mmj806)
 

On deformations of hyperbolic varieties

Mario Kummera, Eli Shamovichb

a Technische Universität Dresden, Fakultät Mathematik, Institut für Geometrie, Zellescher Weg 12-14, 01062 Dresden, Germany
b Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
References:
Abstract: In this paper we study flat deformations of real subschemes of $\mathbb{P}^n$, hyperbolic with respect to a fixed linear subspace, i.e., admitting a finite surjective and real fibered linear projection. We show that the subset of the corresponding Hilbert scheme consisting of such subschemes is closed and connected in the classical topology. Every smooth variety in this set lies in the interior of this set. Furthermore, we provide sufficient conditions for a hyperbolic subscheme to admit a flat deformation to a smooth hyperbolic subscheme. This leads to new examples of smooth hyperbolic varieties.
Key words and phrases: hyperbolic variety, Hilbert scheme, deformations.
Bibliographic databases:
Document Type: Article
MSC: Primary 14P99; Secondary 14D99
Language: English
Citation: Mario Kummer, Eli Shamovich, “On deformations of hyperbolic varieties”, Mosc. Math. J., 21:3 (2021), 593–612
Citation in format AMSBIB
\Bibitem{KumSha21}
\by Mario~Kummer, Eli~Shamovich
\paper On deformations of hyperbolic varieties
\jour Mosc. Math.~J.
\yr 2021
\vol 21
\issue 3
\pages 593--612
\mathnet{http://mi.mathnet.ru/mmj806}
\crossref{https://doi.org/10.17323/1609-4514-2021-21-3-593-612}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109399836}
Linking options:
  • https://www.mathnet.ru/eng/mmj806
  • https://www.mathnet.ru/eng/mmj/v21/i3/p593
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:41
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024