Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2021, Volume 21, Number 3, Pages 507–565
DOI: https://doi.org/10.17323/1609-4514-2021-21-3-507-565
(Mi mmj804)
 

This article is cited in 6 scientific papers (total in 6 papers)

Deligne categories and the periplectic Lie superalgebra

Inna Entova-Aizenbuda, Vera Serganovab

a Dept. of Mathematics, Ben Gurion University, Beer-Sheva, Israel
b Dept. of Mathematics, University of California at Berkeley, Berkeley, CA 94720
Full-text PDF Citations (6)
References:
Abstract: We study stabilization of finite-dimensional representations of the periplectic Lie superalgebras $\mathfrak{p}(n)$ as $n \to \infty$.
The paper gives a construction of the tensor category $\mathrm{Rep}(\underline{P})$, possessing nice universal properties among tensor categories over the category $\mathrm{sVect}$ of finite-dimensional complex vector superspaces.
First, it is the “abelian envelope” of the Deligne category corresponding to the periplectic Lie superalgebra.
Secondly, given a tensor category $\mathcal{C}$ over $\mathrm{sVect}$, exact tensor functors $\mathrm{Rep}(\underline{P})\rightarrow \mathcal{C}$ classify pairs $(X, \omega)$ in $\mathcal{C}$, where $\omega\colon X \otimes X \to \Pi1$ is a non-degenerate symmetric form and $X$ not annihilated by any Schur functor.
The category $\mathrm{Rep}(\underline{P})$ is constructed in two ways. The first construction is through an explicit limit of the tensor categories $\mathrm{Rep}(\mathfrak{p}(n))$ ($n\geq 1$) under Duflo–Serganova functors. The second construction (inspired by P. Etingof) describes $\mathrm{Rep}(\underline{P})$ as the category of representations of a periplectic Lie supergroup in the Deligne category $\mathrm{sVect} \boxtimes \mathrm{Rep}(\underline{\mathrm{GL}}_t)$.
Key words and phrases: deligne categories, periplectic Lie superalgebra, tensor categories, stabilization in representation theory, Duflo–Serganova functor.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Inna Entova-Aizenbud, Vera Serganova, “Deligne categories and the periplectic Lie superalgebra”, Mosc. Math. J., 21:3 (2021), 507–565
Citation in format AMSBIB
\Bibitem{EntSer21}
\by Inna~Entova-Aizenbud, Vera~Serganova
\paper Deligne categories and the periplectic Lie~superalgebra
\jour Mosc. Math.~J.
\yr 2021
\vol 21
\issue 3
\pages 507--565
\mathnet{http://mi.mathnet.ru/mmj804}
\crossref{https://doi.org/10.17323/1609-4514-2021-21-3-507-565}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109897097}
Linking options:
  • https://www.mathnet.ru/eng/mmj804
  • https://www.mathnet.ru/eng/mmj/v21/i3/p507
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:60
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024