Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2021, Volume 21, Number 3, Pages 453–466
DOI: https://doi.org/10.17323/1609-4514-2021-21-3-453-466
(Mi mmj801)
 

Some automorphism groups are linear algebraic

Michel Brion

Institut Fourier, University of Grenoble, 100 rue des Mathematiques, 38610 Gieres, France
References:
Abstract: Consider a normal projective variety $X$, a linear algebraic subgroup $G$ of $\mathrm{Aut}(X)$, and the field $K$ of $G$-invariant rational functions on $X$. We show that the subgroup of $\mathrm{Aut}(X)$ that fixes $K$ pointwise is linear algebraic. If $K$ has transcendence degree $1$ over the base field $k$, then $\mathrm{Aut}(X)$ is an algebraic group.
Key words and phrases: automorphism group, linear algebraic group.
Bibliographic databases:
Document Type: Article
MSC: 14L30, 14M17, 20G15
Language: English
Citation: Michel Brion, “Some automorphism groups are linear algebraic”, Mosc. Math. J., 21:3 (2021), 453–466
Citation in format AMSBIB
\Bibitem{Bri21}
\by Michel~Brion
\paper Some automorphism groups are linear algebraic
\jour Mosc. Math.~J.
\yr 2021
\vol 21
\issue 3
\pages 453--466
\mathnet{http://mi.mathnet.ru/mmj801}
\crossref{https://doi.org/10.17323/1609-4514-2021-21-3-453-466}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109855175}
Linking options:
  • https://www.mathnet.ru/eng/mmj801
  • https://www.mathnet.ru/eng/mmj/v21/i3/p453
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:61
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024