Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 1, Pages 123–171
DOI: https://doi.org/10.17323/1609-4514-2003-3-1-123-171
(Mi mmj80)
 

This article is cited in 6 scientific papers (total in 6 papers)

The multiple ergodicity of nondiscrete subgroups of ${\rm Diff}^\omega(S^1)$

J. C. Rebeloa, R. R. Silvab

a State University of New York, Department of Mathematical Sciences
b University of Brasilia
Full-text PDF Citations (6)
References:
Abstract: We deal with nondiscrete subgroups of ${\rm Diff}^\omega(S^1)$, the group of orientation-preserving analytic diffeomorphisms of the circle. If $\Gamma$ is such a group, we consider its natural diagonal action $\widetilde\Gamma$ on the $n$-dimensional torus $\mathbb T^n$. A complete characterization of those groups $\Gamma$ whose corresponding $\widetilde\Gamma$-action on $\mathbb T^n$ is not piecewise ergodic (see Introduction) for all $n\in\mathbb N$ is obtained (see Theorem A). Theorem A can also be interpreted as an extension of Lie's classification of Lie algebras on $S^1$ to general nondiscrete subgroups of $S^1$.
Key words and phrases: Diagonal action, ergodicity, vector fields.
Received: January 7, 2002
Bibliographic databases:
MSC: 58F11, 22E65
Language: English
Citation: J. C. Rebelo, R. R. Silva, “The multiple ergodicity of nondiscrete subgroups of ${\rm Diff}^\omega(S^1)$”, Mosc. Math. J., 3:1 (2003), 123–171
Citation in format AMSBIB
\Bibitem{RebSil03}
\by J.~C.~Rebelo, R.~R.~Silva
\paper The multiple ergodicity of nondiscrete subgroups of ${\rm Diff}^\omega(S^1)$
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 1
\pages 123--171
\mathnet{http://mi.mathnet.ru/mmj80}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-1-123-171}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1986539}
\zmath{https://zbmath.org/?q=an:1050.37019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594100010}
Linking options:
  • https://www.mathnet.ru/eng/mmj80
  • https://www.mathnet.ru/eng/mmj/v3/i1/p123
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:206
    References:67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024