Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2021, Volume 21, Number 2, Pages 401–412
DOI: https://doi.org/10.17323/1609-4514-2021-21-2-401-412
(Mi mmj798)
 

This article is cited in 4 scientific papers (total in 4 papers)

Categorical vs topological entropy of autoequivalences of surfaces

Dominique Mattei

Institut de Mathématiques de Toulouse; UMR5219, UPS, F-31062 Toulouse Cedex 9, France
Full-text PDF Citations (4)
References:
Abstract: In this paper, we give an example of an autoequivalence with positive categorical entropy (in the sense of Dimitrov, Haiden, Katzarkov and Kontsevich) for any surface containing a $(-2)$-curve. Then we show that this equivalence gives another counter-example to a conjecture proposed by Kikuta and Takahashi. In a second part, we study the action on cohomology induced by spherical twists composed with standard autoequivalences on a surface $S$ and show that their spectral radii correspond to the topological entropy of the corresponding automorphisms of $S$.
Key words and phrases: categorical entropy, derived categories, projective surfaces.
Bibliographic databases:
Document Type: Article
MSC: 14F08
Language: English
Citation: Dominique Mattei, “Categorical vs topological entropy of autoequivalences of surfaces”, Mosc. Math. J., 21:2 (2021), 401–412
Citation in format AMSBIB
\Bibitem{Mat21}
\by Dominique~Mattei
\paper Categorical vs topological entropy of autoequivalences of surfaces
\jour Mosc. Math.~J.
\yr 2021
\vol 21
\issue 2
\pages 401--412
\mathnet{http://mi.mathnet.ru/mmj798}
\crossref{https://doi.org/10.17323/1609-4514-2021-21-2-401-412}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105256002}
Linking options:
  • https://www.mathnet.ru/eng/mmj798
  • https://www.mathnet.ru/eng/mmj/v21/i2/p401
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:63
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024