Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2021, Volume 21, Number 2, Pages 325–364
DOI: https://doi.org/10.17323/1609-4514-2021-21-2-325-364
(Mi mmj795)
 

This article is cited in 8 scientific papers (total in 8 papers)

Rota–Baxter operators on unital algebras

V. Gubarevab

a University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
b Sobolev Institute of Mathematics, Acad. Koptyug ave. 4, 630090 Novosibirsk, Russia
Full-text PDF Citations (8)
References:
Abstract: We state that all Rota–Baxter operators of nonzero weight on the Grassmann algebra over a field of characteristic zero are projections on a subalgebra along another one. We show the one-to-one correspondence between the solutions of associative Yang–Baxter equation and Rota–Baxter operators of weight zero on the matrix algebra $M_n(F)$ (joint with P. Kolesnikov).
We prove that all Rota–Baxter operators of weight zero on a unital associative (alternative, Jordan) algebraic algebra over a field of characteristic zero are nilpotent. We introduce a new invariant for an algebra $A$ called the RB-index $\mathrm{rb}(A)$ as the minimal nilpotency index of Rota–Baxter operators of weight zero on $A$. We show that $\mathrm{rb}(M_n(F)) = 2n-1$ provided that characteristic of $F$ is zero.
Key words and phrases: rota–Baxter operator, Yang–Baxter equation, matrix algebra, Grassmann algebra, Faulhaber polynomial.
Bibliographic databases:
Document Type: Article
MSC: 16W99, 17C20
Language: English
Citation: V. Gubarev, “Rota–Baxter operators on unital algebras”, Mosc. Math. J., 21:2 (2021), 325–364
Citation in format AMSBIB
\Bibitem{Gub21}
\by V.~Gubarev
\paper Rota--Baxter operators on unital algebras
\jour Mosc. Math.~J.
\yr 2021
\vol 21
\issue 2
\pages 325--364
\mathnet{http://mi.mathnet.ru/mmj795}
\crossref{https://doi.org/10.17323/1609-4514-2021-21-2-325-364}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105351833}
Linking options:
  • https://www.mathnet.ru/eng/mmj795
  • https://www.mathnet.ru/eng/mmj/v21/i2/p325
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:79
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024