Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2021, Volume 21, Number 2, Pages 287–323
DOI: https://doi.org/10.17323/1609-4514-2021-21-2-287-323
(Mi mmj794)
 

The spectrum of a module along scheme morphism and multi-operator functional calculus

Anar Dosi

Middle East Technical University Northern Cyprus Campus, Guzelyurt, KKTC, Mersin 10, Turkey
References:
Abstract: The present paper is devoted to a scheme-theoretic version of holomorphic multi-operator functional calculus. We construct a functional calculus with sections of a quasi-coherent sheaf on a noetherian scheme, and prove analogs of the known results from multivariable holomorphic functional calculus over Fréchet modules. A spectrum of an algebraic variety over an algebraically closed field is considered. This concept reflects Taylor joint spectrum from operator theory. Every algebraic variety turns out to be a joint spectrum of the coordinate multiplication operators over its coordinate ring.
Key words and phrases: noetherian schemes, quasi-coherent sheaf, spectrum of a module, sheaf cohomology.
Bibliographic databases:
Document Type: Article
MSC: Primary 14A15, 14F06; Secondary 13D02, 46H30, 13D05
Language: English
Citation: Anar Dosi, “The spectrum of a module along scheme morphism and multi-operator functional calculus”, Mosc. Math. J., 21:2 (2021), 287–323
Citation in format AMSBIB
\Bibitem{Dos21}
\by Anar~Dosi
\paper The spectrum of a module along scheme morphism and multi-operator functional calculus
\jour Mosc. Math.~J.
\yr 2021
\vol 21
\issue 2
\pages 287--323
\mathnet{http://mi.mathnet.ru/mmj794}
\crossref{https://doi.org/10.17323/1609-4514-2021-21-2-287-323}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105535170}
Linking options:
  • https://www.mathnet.ru/eng/mmj794
  • https://www.mathnet.ru/eng/mmj/v21/i2/p287
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:57
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024