Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2021, Volume 21, Number 2, Pages 233–270
DOI: https://doi.org/10.17323/1609-4514-2021-21-2-233-270
(Mi mmj792)
 

This article is cited in 7 scientific papers (total in 7 papers)

Simple Lie algebras, Drinfeld–Sokolov hierarchies, and multi-point correlation functions

Marco Bertolaabc, Boris Dubrovinad, Di Yangef

a SISSA, via Bonomea 265, Trieste 34136, Italy
b Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve W., Montréal, Québec, H3G 1M8, Canada
c Centre de recherches mathématiques, Université de Montréal, C. P. 6128, succ. centre ville, Montréal, Québec, H3C 3J7, Canada
d N. N. Bogolyubov Laboratory for Geometrical Methods in Mathematical Physics, Moscow State University, Moscow 119899, Russia

e Max-Planck-Institut für Mathematik, Vivatsgasse 7, Bonn 53111, Germany
f School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, P.R. China
Full-text PDF Citations (7)
References:
Abstract: For a simple Lie algebra $\mathfrak g$, we derive a simple algorithm for computing logarithmic derivatives of tau-functions of Drinfeld–Sokolov hierarchy of $\mathfrak g$-type in terms of $\mathfrak g$-valued resolvents. We show, for the topological solution to the lowest-weight-gauge Drinfeld–Sokolov hierarchy of $\mathfrak g$-type, the resolvents evaluated at zero satisfy the topological ODE.
Key words and phrases: simple Lie algebra, tau-function, Drinfeld–Sokolov hierarchy, matrix resolvent, topological ODE.
Bibliographic databases:
Document Type: Article
MSC: Primary 37K10; Secondary 53D45, 17B80, 14N35
Language: English
Citation: Marco Bertola, Boris Dubrovin, Di Yang, “Simple Lie algebras, Drinfeld–Sokolov hierarchies, and multi-point correlation functions”, Mosc. Math. J., 21:2 (2021), 233–270
Citation in format AMSBIB
\Bibitem{BerDubYan21}
\by Marco~Bertola, Boris~Dubrovin, Di~Yang
\paper Simple Lie algebras, Drinfeld--Sokolov hierarchies, and multi-point correlation functions
\jour Mosc. Math.~J.
\yr 2021
\vol 21
\issue 2
\pages 233--270
\mathnet{http://mi.mathnet.ru/mmj792}
\crossref{https://doi.org/10.17323/1609-4514-2021-21-2-233-270}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105315829}
Linking options:
  • https://www.mathnet.ru/eng/mmj792
  • https://www.mathnet.ru/eng/mmj/v21/i2/p233
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:137
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024