|
This article is cited in 7 scientific papers (total in 7 papers)
Simple Lie algebras, Drinfeld–Sokolov hierarchies, and multi-point correlation functions
Marco Bertolaabc, Boris Dubrovinad, Di Yangef a SISSA, via Bonomea 265, Trieste 34136, Italy
b Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve W., Montréal, Québec, H3G 1M8, Canada
c Centre de recherches mathématiques, Université de Montréal, C. P. 6128, succ. centre ville, Montréal, Québec, H3C 3J7, Canada
d N. N. Bogolyubov Laboratory for Geometrical Methods in Mathematical Physics, Moscow State University, Moscow 119899, Russia
e Max-Planck-Institut für Mathematik, Vivatsgasse 7, Bonn 53111, Germany
f School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, P.R. China
Abstract:
For a simple Lie algebra $\mathfrak g$, we derive a simple algorithm for computing logarithmic derivatives of tau-functions of Drinfeld–Sokolov hierarchy of $\mathfrak g$-type in terms of $\mathfrak g$-valued resolvents. We show, for the topological solution to the lowest-weight-gauge Drinfeld–Sokolov hierarchy of $\mathfrak g$-type, the resolvents evaluated at zero satisfy the topological ODE.
Key words and phrases:
simple Lie algebra, tau-function, Drinfeld–Sokolov hierarchy, matrix resolvent, topological ODE.
Citation:
Marco Bertola, Boris Dubrovin, Di Yang, “Simple Lie algebras, Drinfeld–Sokolov hierarchies, and multi-point correlation functions”, Mosc. Math. J., 21:2 (2021), 233–270
Linking options:
https://www.mathnet.ru/eng/mmj792 https://www.mathnet.ru/eng/mmj/v21/i2/p233
|
Statistics & downloads: |
Abstract page: | 137 | References: | 32 |
|