Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2021, Volume 21, Number 1, Pages 191–226
DOI: https://doi.org/10.17323/1609-4514-2021-21-1-191-226
(Mi mmj791)
 

This article is cited in 1 scientific paper (total in 1 paper)

Schubert polynomials, theta and eta polynomials, and Weyl group invariants

Harry Tamvakis

University of Maryland, Department of Mathematics, William E. Kirwan Hall, 4176 Campus Drive, College Park, MD 20742, USA
Full-text PDF Citations (1)
References:
Abstract: We examine the relationship between the (double) Schubert polynomials of Billey–Haiman and Ikeda–Mihalcea–Naruse and the (double) theta and eta polynomials of Buch–Kresch–Tamvakis and Wilson from the perspective of Weyl group invariants. We obtain generators for the kernel of the natural map from the corresponding ring of Schubert polynomials to the (equivariant) cohomology ring of symplectic and orthogonal flag manifolds.
Key words and phrases: schubert polynomials, theta and eta polynomials, Weyl group invariants, flag manifolds, equivariant cohomology.
Bibliographic databases:
Document Type: Article
MSC: Primary 14M15; Secondary 05E05, 13A50, 14N15
Language: English
Citation: Harry Tamvakis, “Schubert polynomials, theta and eta polynomials, and Weyl group invariants”, Mosc. Math. J., 21:1 (2021), 191–226
Citation in format AMSBIB
\Bibitem{Tam21}
\by Harry~Tamvakis
\paper Schubert polynomials, theta and eta polynomials, and Weyl group invariants
\jour Mosc. Math.~J.
\yr 2021
\vol 21
\issue 1
\pages 191--226
\mathnet{http://mi.mathnet.ru/mmj791}
\crossref{https://doi.org/10.17323/1609-4514-2021-21-1-191-226}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101215122}
Linking options:
  • https://www.mathnet.ru/eng/mmj791
  • https://www.mathnet.ru/eng/mmj/v21/i1/p191
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:51
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024